Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569887

ABSTRACT

Incidence of hepatocellular carcinoma (HCC) is increasing globally. Radioembolization (RE)/selective internal radiotherapy (SIRT) is a promising treatment for inoperable HCC. RE triggers an immune response, involving extracellular vesicles (EVs) which are crucial for cell communication and tumor development. This study explores EV immune profiles and origins in patients with inoperable HCC before and after SIRT/RE. Blood samples from 50 HCC-patients treated with SIRT/RE were collected before and after therapy to determine cytokines and isolate EVs using size exclusion chromatography. The dynamic range and EV quality required for detecting variations in surface markers were assessed. Thirty-seven EV surface markers were analyzed using flow cytometry and correlated with clinical parameters. Several immunological markers (CD4, CD2, CD40, CD45, CD49e, CD69, CD209-EVs) were present in the circulation of HCC patients. These markers positively correlated with therapy response and survival. Conversely, B cell CD20, endothelial cell CD146, platelet CD49e, and CD41b EV markers negatively correlated with 60-day survival. Elevated levels of IL-6 and IL-8 before therapy correlated negatively with patient survival, coinciding with a positive correlation with CD20-positive EVs. Plasma EVs from HCC patients exhibit immunological, cancer, and coagulation markers, including potential biomarkers (CD4, CD20, CD49e, CD146). These may enhance our understanding of cancer biology and facilitate SIRT therapy monitoring.

2.
In Vivo ; 36(5): 2265-2274, 2022.
Article in English | MEDLINE | ID: mdl-36099091

ABSTRACT

BACKGROUND/AIM: The aim of the present study was to determine whether the early systemic markers of inflammation, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), respond to high dose-rate (HDR) brachytherapy, and their possible correlation with radiation-induced liver injury of patients with liver metastases. PATIENTS AND METHODS: This prospective study included 20 tumor patients (TP) undergoing irradiation-based interstitial HDR brachytherapy (iBT) of liver metastases, who received total radiation ablative doses to the planning target volume ranging from 15 to 25 Gy, depending on the tumor entity. Hepatobiliary magnetic resonance imaging (MRI) was performed 6 weeks after iBT to assess the maximum extent of focal radiation-induced liver injury (fRILI). Furthermore, blood samples for the pro-inflammatory cytokine response were taken one day prior to and 6 weeks after irradiation. IL-6 and TNF-α were measured by flow cytometry. Ten healthy volunteers (HV) were used as control group. RESULTS: Compared to HV, TNF-α was significantly enhanced in TP before and after therapy (p<0.05 for both comparisons), while IL-6 increase at baseline was not statistically significant. HDR brachytherapy significantly reduced IL-6 levels after 6 weeks in TP (p<0.05). IL-6 levels after 6 weeks have shown a significant negative correlation with the tumor volume (r=-0.5606; p=0.0261), while no significant correlation was observed between baseline IL-6 or follow-up IL-6 levels with the fRILI. Baseline TNF-α levels positively correlated with the tumor volume (r=0.4342; p=0.0492), and post treatment TNF-α levels showed a significant correlation with the fRILI (r=0.7404; p=0.0022). CONCLUSION: TNF-α was correlated with both tumor volume and radiation-induced liver injury; thus, representing a promising biomarker for focal radiation-induced liver injury.


Subject(s)
Brachytherapy , Chemical and Drug Induced Liver Injury, Chronic , Liver Neoplasms , Radiation Injuries , Brachytherapy/adverse effects , Humans , Interleukin-6 , Liver Neoplasms/radiotherapy , Liver Neoplasms/secondary , Prospective Studies , Radiation Injuries/diagnosis , Radiation Injuries/etiology , Tumor Necrosis Factor-alpha
3.
Cells ; 11(15)2022 07 27.
Article in English | MEDLINE | ID: mdl-35954154

ABSTRACT

The incidence of cholangiocellular carcinoma (CCA) is rising worldwide. As there are no specific early symptoms or specific markers of CCA, it is often diagnosed in later inoperable stages. Accumulating evidence underlines the importance of radiation therapy in the induction of antitumor immunity. The surface protein composition on extracellular vesicles (EVs) relates to originating cells and thus may play a role in vesicle function. We assessed immune profiles of EVs and their immune origin in patients with inoperable CCA prior and after selective internal radiotherapy (SIRT). A total of 47 CCA patients receiving SIRT and 12 healthy volunteers (HV) were included. Blood was withdrawn before therapy (pre T) and after T. EVs were purified from plasma by cluster of differentiation (CD)9-, CD63-, and CD81-immunobead isolation. To detect differently abundant surface markers, dynamic range and EVs input quality were assessed. A total of 37 EVs surface markers were measured by flow cytometry and correlated either with the administered activity dose (MBq) or with the interval until death (month). EVs phenotyping identified lymphocytes, B cells, NK cells, platelets, endothelial cells, leukocyte activation, B cell activation, T and B cell adhesion markers, stem/progenitor cells, and antigen-presenting cells (APC) as EVs-parenteral cells. CD4 and CD8 significantly declined, while other markers significantly increased in CCA patients pre T vs. HV. Platelets-deriving EVs significantly decreased, normalizing to levels of HV but still significantly increasing vs. HV post SIRT. B cells-deriving EVs significantly increased pre T vs. HV, positively correlating with administered activity dose. MHCII and CD40 EVs significantly increased pre SIRT and negatively correlated with administered activity dose, while EVs from antigen presenting cells and CD49e pre SIRT positively correlated with survival time after therapy. Increased levels of CD24 and CD44 in cancer pre T were significantly decreased post T. Among the heterogeneity of EVs that was demonstrated, in particular, B cells-deriving, MHCII, and CD40 positive or APC-deriving EVs need to be further studied for their diagnostic or prognostic relevance in clinical scenarios.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Extracellular Vesicles , Humans , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic , Biomarkers/metabolism , Cholangiocarcinoma/pathology , Endothelial Cells , Extracellular Vesicles/metabolism , Radiotherapy
4.
Front Immunol ; 13: 895100, 2022.
Article in English | MEDLINE | ID: mdl-35874776

ABSTRACT

Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.


Subject(s)
Lung , Pneumonia , Air Pollutants , Antigen-Presenting Cells/immunology , Antimicrobial Peptides , Chemokines , Cytokines , Granulocytes/immunology , Humans , Lung/immunology , Mucus/immunology
5.
Front Immunol ; 13: 866925, 2022.
Article in English | MEDLINE | ID: mdl-35663960

ABSTRACT

Background: Trauma is the third leading cause of mortality worldwide. Upon admission, up to 50% of traumatized patients are acutely intoxicated with alcohol, which might lead to aberrant immune responses. An excessive and uncontrolled inflammatory response to injury is associated with damage to trauma-distant organs. We hypothesize that, along with inflammation-induced apoptosis, the activation of the Wnt/ß-catenin signaling pathway would cause breakdown of the lung barrier and the development of lung injury after trauma. It remains unclear whether ethanol intoxication (EI) prior to trauma and hemorrhagic shock will attenuate inflammation and organ injury. Methods: In this study, 14 male C57BL/6J mice were randomly assigned to two groups and exposed either to EtOH or to NaCl as a control by an oral gavage before receiving a femur fracture (Fx) and hemorrhagic shock, followed by resuscitation (THFx). Fourteen sham animals received either EtOH or NaCl and underwent surgical procedures without THFx induction. After 24 h, oil red O staining of fatty vacuoles in the liver was performed. Histological lung injury score (LIS) was assessed to analyze the trauma-induced RLI. Gene expression of Cxcl1, Il-1ß, Muc5ac, Tnf, and Tnfrsf10b as well as CXCL1, IL-1ß, and TNF protein levels in the lung tissue and bronchoalveolar lavage fluid were determined by RT-qPCR, ELISA, and immunohistological analyses. Infiltrating polymorphonuclear leukocytes (PMNLs) were examined via immunostaining. Apoptosis was detected by activated caspase-3 expression in the lung tissue. To confirm active Wnt signaling after trauma, gene expression of Wnt3a and its inhibitor sclerostin (Sost) was determined. Protein expression of A20 and RIPK4 as possible modulators of the Wnt signaling pathway was analyzed via immunofluorescence. Results: Significant fatty changes in the liver confirmed the acute EI. Histopathology and decreased Muc5ac expression revealed an increased lung barrier breakdown and concomitant lung injury after THFx versus sham. EI prior trauma decreased lung injury. THFx increased not only the gene expression of pro-inflammatory markers but also the pulmonary infiltration with PMNL and apoptosis versus sham, while EI prior to THFx reduced those changes significantly. EI increased the THFx-reduced gene expression of Sost and reduced the THFx-induced expression of Wnt3a. While A20, RIPK4, and membranous ß-catenin were significantly reduced after trauma, they were enhanced upon EI. Conclusion: These findings suggest that acute EI alleviates the uncontrolled inflammatory response and lung barrier breakdown after trauma by suppressing the Wnt/ß-catenin signaling pathway.


Subject(s)
Alcoholic Intoxication , Lung Injury , Shock, Hemorrhagic , Animals , Disease Models, Animal , Ethanol/toxicity , Humans , Inflammation/pathology , Lung/pathology , Lung Injury/etiology , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/pathology , Sodium Chloride , Wnt Signaling Pathway
6.
J Cancer Res Clin Oncol ; 148(10): 2815-2826, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35596772

ABSTRACT

BACKGROUND: Locoregional therapies, as imaging-guided tumor-directed procedures, are emerging treatment strategies in the management of primary and secondary liver malignancies such as e.g. colorectal cancer liver metastases. As one of those, irradiation-based interstitial high dose rate brachytherapy (iBT) of liver metastases bears a risk of developing focal radiation-induced liver injury (fRILI). Since little is known about biological factors involved in hepatic dysfunction after irradiation, the aim of this study was to identify factors, that may play a role in the underlying mechanism of fRILI, and that potentially may serve as biomarkers for post-therapeutic fRILI to improve specific management and treatment of patients. METHODS: Twenty-two patients with hepatic malignancies (tumor patients, TP) underwent iBT with total ablative doses of radiation to the target volume ranging from e.g. 15 to 25 Gy. Hepatobiliary magnetic resonance imaging (MRI) was performed 6 weeks after iBT to quanitify fRILI. Blood samples were taken before (pre) and 6 weeks after (post) iBT from TP, and from ten healthy volunteers (HV controls) for the analyses of humoral mediators: monocyte chemoattractant protein-1 (MCP-1), chemokine (C-X3-C motif) ligand 1 (CX3CL1), vascular endothelial growth factor (VEGF) and beta-nerve growth factor (beta-NGF) using the Multi-Analyte Flow Assay via flow cytometry. Correlation analyses between the humoral mediators (pre and post iBT) with the tumor volume and fRILI were performed. RESULTS: While MCP-1 and CX3CL1 tended to decrease in TP vs. HV, VEGF was significantly decreased in TP vs. HV pre and post iBT (p < 0.05). Beta-NGF levels were significantly increased in TP vs. HV pre and post iBT (p < 0.05). Baseline circulating levels of MCP-1, VEGF and beta-NGF have shown significant positive correlations with the hepatic tumor volume (p < 0.05). Circulating levels of humoral mediators before treatment did not correlate with fRILI, while CX3CL1 and VEGF after iBT have shown significant positive correlations with fRILI (p < 0.05). CONCLUSION: Tumor volume and threshold dose of irradiation damage correlated positively with MCP-1 and VEGF as well as NGF and CX3CL, respectively. Thus, investigation of biological mediators in blood samples from tumor patients may provide an appropriate tool to predict fRILI after interstitial HDR brachytherapy of liver metastases.


Subject(s)
Brachytherapy , Liver Neoplasms , Liver , Radiation Injuries , Brachytherapy/adverse effects , Chemokines , Humans , Liver/pathology , Liver/radiation effects , Liver Neoplasms/secondary , Nerve Growth Factor , Radiation Injuries/etiology , Radiotherapy Dosage , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...