Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(23): 6756-6771, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818677

ABSTRACT

Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.


Subject(s)
Bryophyta , Tracheophyta , Ecosystem , Biodiversity , Wetlands , Plants
2.
Environ Sci Technol ; 43(24): 9230-6, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20000514

ABSTRACT

Background concentrations of selected persistent organic pollutants (polychlorinated biphenyls, hexachlorobenzene, p,p'-DDT including metabolites) and polyaromatic hydrocarbons in soils of the Czech Republic were predicted in this study, and the main factors affecting their geographical distribution were identified. A database containing POP concentrations in 534 soil samples and the set of specific environmental predictors were used for development of a model based on regression trees. Selected predictors addressed specific conditions affecting a behavior of the individual groups of pollutants: a presence of primary and secondary sources, density of human settlement, geographical characteristics and climatic conditions, land use, land cover, and soil properties. The model explained a high portion of variability in relationship between the soil concentrations of selected organic pollutants and available predictors. A tree for hexachlorobenzene was the most successful with 76.2% of explained variability, followed by trees for polyaromatic hydrocarbons (71%), polychlorinated biphenyls (68.6%), and p,p'-DDT and metabolites (65.4%). The validation results confirmed that the model is stable, general and useful for prediction. The stochastic model applied in this study seems to be a promising tool capable of predicting the environmental distribution of organic pollutants.


Subject(s)
DDT/analysis , Fungicides, Industrial/analysis , Hexachlorobenzene/analysis , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Stochastic Processes , Carbon/chemistry , Czech Republic , Humans , Models, Chemical , Regression Analysis
3.
Ecology ; 89(6): 1541-53, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18589519

ABSTRACT

Habitats vary considerably in the level of invasion (number or proportion of alien plant species they contain), which depends on local habitat properties, propagule pressure, and climate. To determine the invasibility (susceptibility to invasions) of different habitats, it is necessary to factor out the effects of any confounding variables such as propagule pressure and climate on the level of invasion. We used 20 468 vegetation plots from 32 habitats in the Czech Republic to compare the invasibility of different habitats. Using regression trees, the proportion of alien plants, including archaeophytes (prehistoric to medieval invaders) and neophytes (recent invaders), was related to variables representing habitat properties, propagule pressure, and climate. The propagule pressure was expressed as the proportion of surrounding urban and industrial or agricultural land, human population density, distance from a river, and history of human colonization in the region. Urban and industrial land use had a positive effect on the proportion of both archaeophytes and neophytes. Agricultural land use, higher population density, and longer history of human impact positively affected the proportion of archaeophytes. Disturbed human-made habitats with herbaceous vegetation were most invaded by both groups of aliens. Neophytes were also relatively common in disturbed woody vegetation, such as broad-leaved plantations, forest clearings, and riverine scrub. These habitats also had the highest proportion of aliens after removing the effect of propagule pressure and climate, indicating that they are not only the most invaded, but also most invasible. These habitats experience recurrent disturbances and are rich, at least temporarily, in available nutrients, which supports the hypothesis that fluctuating resources are the major cause of habitat invasibility. The least invaded habitats were mires and alpine-subalpine grasslands and scrub. After removing the effect of propagule pressure and climate, some habitats actually invaded at an intermediate level had very low proportions of aliens. This indicates that these habitats (e.g., dry, wet, and saline grasslands, base-rich fens, and broad-leaved deciduous woodlands) are resistant to invasion.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Czech Republic
SELECTION OF CITATIONS
SEARCH DETAIL
...