Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Anim Genet ; 55(1): 152-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921236

ABSTRACT

Microcephaly is a rare neurodevelopmental disorder characterized by reduced skull circumference and brain volume that occurs sporadically in farm animals. We investigated an early-onset neurodegenerative disorder observed in seven lambs of purebred Kerry Hill sheep. Clinical signs included inability to stand or severe ataxia, convulsions, and early death. Diagnostic imaging and brain necropsy confirmed microcephaly. The pedigree of the lambs suggested monogenic autosomal recessive inheritance. We sequenced the genome of one affected lamb, and comparison with 115 control genomes revealed a single private protein-changing variant. This frameshift variant, MFSD2A: c.285dupA, p.(Asp96fs*9), represents a 1-bp duplication predicted to truncate 80% of the open reading frame. MFSD2A is a transmembrane protein that is essential for maintaining blood-brain barrier homeostasis and plays a key role in regulating brain lipogenesis. Human MFSD2A pathogenic variants are associated with a neurodevelopmental disorder with progressive microcephaly, spasticity, and brain imaging abnormalities (NEDMISBA, OMIM 616486). Here we present evidence for the occurrence of a recessively inherited form of microcephaly in sheep due to a loss-of-function variant in MFSD2A (OMIA 002371-9940). To the best of our knowledge, this is the first report of a spontaneous MFSD2A variant in domestic animals.


Subject(s)
Microcephaly , Sheep Diseases , Symporters , Humans , Sheep/genetics , Animals , Microcephaly/genetics , Microcephaly/veterinary , Microcephaly/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Frameshift Mutation , Sheep, Domestic/genetics , Sheep, Domestic/metabolism , Animals, Domestic/genetics , Pedigree , Symporters/genetics , Sheep Diseases/genetics
2.
J Vet Intern Med ; 37(6): 2631-2637, 2023.
Article in English | MEDLINE | ID: mdl-37681469

ABSTRACT

Hepatic fibrinogen storage disease (HFSD) was diagnosed in a 5-month-old Wagyu calf with a history of recurrent respiratory disease. It was characterized by lethargy, dehydration, acidemia, and increased liver enzyme activities. Histologically, disseminated hepatocytes were swollen and showed a single, sharply demarcated, faintly eosinophilic cytoplasmic inclusion with a ground-glass appearance, with the nucleus in an eccentric position. Cytoplasmic inclusions did not stain with the periodic acid-Schiff (PAS) reaction. Using a rabbit polyclonal antibody against fibrinogen, the cytoplasmic vacuoles in the hepatocytes stained intensely. Electron microscopy disclosed hepatocytes with membrane-bound cytoplasmic inclusions filled with fine granular material interspersed with a few coarse-grained electron-dense granules. A trio whole-genome sequencing approach identified a deleterious homozygous missense variant in DGKG (p.Thr721Ile). The allele frequency in 209 genotyped Wagyu was 7.2%. This is a report of a DGKG-related recessive inherited disorder in cattle and adds DGKG to the list of candidate genes for HFSD in other species.


Subject(s)
Cattle Diseases , Liver Diseases , Metabolic Diseases , Animals , Cattle/genetics , Cattle Diseases/genetics , Cattle Diseases/pathology , Fibrinogen/genetics , Hepatocytes , Liver Diseases/pathology , Liver Diseases/veterinary , Metabolic Diseases/veterinary , Mutation, Missense
3.
Anim Genet ; 54(5): 623-627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37580898

ABSTRACT

In this study, epilepsy with focal seizures progressing to generalized seizures was diagnosed in a 6-month-old Holstein heifer. The seizures were characterized by a brief pre-ictal phase with depression and vocalization. During the ictal phase eyelid spasms, tongue contractions, nodding and abundant salivation were observed, rapidly followed by a convulsive phase with bilateral tonic, clonic or tonic-clonic activity and loss of consciousness. Finally, during the postictal phase the heifer was obtunded and disorientated, unable to perceive obstacles and hypermetric, and pressed its head against objects. In the inter-seizure phase, the heifer was clinically normal. Neuropathology revealed axonal degeneration in the brainstem and diffuse astrocytic hypertrophic gliosis. Whole genome sequencing of the affected heifer identified a private heterozygous splice-site variant in DYRK1B (NM_001081515.1: c.-101-1G>A), most likely resulting in haploinsufficiency owing to loss-of-function. This represents a report of a DYRK1B-associated disease in cattle and adds DYRK1B to the candidate genes for epilepsy.


Subject(s)
Cattle Diseases , Epilepsy , Cattle/genetics , Female , Animals , Haploinsufficiency , Electroencephalography/methods , Epilepsy/genetics , Epilepsy/veterinary , Seizures , Cattle Diseases/genetics
4.
J Dairy Sci ; 106(12): 8969-8978, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641348

ABSTRACT

Shortening of the mandible (brachygnathia inferior) is a congenital, often inherited and variably expressed craniofacial anomaly in domestic animals including cattle. Brachygnathia inferior can lead to poorer animal health and welfare and reduced growth, which ultimately affects productivity. Within the course of the systematic conformation scoring, cases with a frequency of about 0.1% were observed in the Brown Swiss cattle population of Switzerland. In contrast, this anomaly is almost unknown in the Original Braunvieh population, representing the breed of origin. Because none of the individually examined 46 living offspring of our study cohort of 145 affected cows showed the trait, we can most likely exclude a monogenic-dominant mode of inheritance. We hypothesized that either a monogenic recessive or a complex mode of inheritance was underlying. Through a genome-wide association study of 145 cases and 509 controls with imputed 624k SNP data, we identified a 4.5 Mb genomic region on bovine chromosome 5 significantly associated with this anomaly. This locus was fine-mapped using whole-genome sequencing data. A run of homozygosity analysis revealed a critical interval of 430 kb. A breed specific frameshift duplication in WNT10B (rs525007739; c.910dupC; p.Arg304ProfsTer14) located in this genomic region was found to be associated with a 21.5-fold increased risk of brachygnathia inferior in homozygous carriers. Consequently, we present for the first time a genetic locus associated with this well-known anomaly in cattle, which allows DNA-based selection of Brown Swiss animals at decreased risk for mandibular shortening. In addition, this study represents the first large animal model of a WNT10B-related inherited developmental disorder in a mammalian species.


Subject(s)
Genome-Wide Association Study , Genome , Animals , Cattle , Female , Genome-Wide Association Study/veterinary , Genotype , Homozygote , Phenotype , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins , Wnt Proteins
5.
Genomics ; 115(5): 110689, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37488055

ABSTRACT

In North Country Cheviot lambs with early-onset progressive ataxia and motor neuron degeneration, whole-genome sequencing identified a homozygous loss-of-function variant in the ovine transmembrane and coiled-coil domains (TMCO6) gene. The familial recessive form of motor neuron disease in sheep is due to a pathogenic 4 bp deletion leading to a 50% protein truncation that is assumed to result in the absence of a functional TMCO6. This uncharacterised protein is proposed to interact with ubiquilin 1 which is associated with Alzheimer's disease, whereas sporadic forms of amyotrophic lateral sclerosis are caused by variants in UBQLN2. Our findings provide a first spontaneous animal model for TMCO6, which could have implications in the studies of other comparative neurodegenerative diseases. In addition, these results will allow the design of a genetic test to prevent the occurrence of this fatal disease in the affected sheep population.

8.
Animals (Basel) ; 12(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36139188

ABSTRACT

Congenital tumors occur infrequently in cattle. The aim of this study was to detail the clinicopathological phenotype of a Holstein calf with a congenital mast cell tumor and to identify the genetic cause by a whole-genome sequencing (WGS) trio-approach. An 18-day-old male Holstein calf was clinically examed and revealed multifocal, alopecic, thick and wrinkled skin lesions over the entire body. At 6 months of age, the general condition of the calf was characterized by retarded growth, poor nutritional status, and ulceration of the skin lesions. Histopathological examination revealed a primary cutaneous, poorly differentiated embryonal mast cell tumor with metastases in the lymph nodes and liver. Genetic analysis revealed a private X-linked variant in the PLP2 gene (chrX:87216480C > T; c.50C > T), which was present only in the genomes of the case (hemizygous) and his mother (heterozygous). It was absent in the sire as well as in 5365 control genomes. The identified missense variant exchanges the encoded amino acid of PLP2 at position 17 (p.Thr17Ile), which is classified as deleterious and affects a protein that plays a role in tumor growth and metastasis. Therefore, we suggested that the detected PLPL2 variant could be a plausible cause for this congenital condition in the affected calf.

10.
Anim Genet ; 53(5): 557-569, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35748198

ABSTRACT

Twin and multiple births have negative effects on the performance and health of cows and calves. To decipher the genetic architecture of this trait in the two Swiss Brown Swiss cattle populations, we performed various association analyses based on de-regressed breeding values. Genome-wide association analyses were executed using ~600 K imputed SNPs for the maternal multiple birth trait in ~3500 Original Braunvieh and ~7800 Brown Swiss animals. Significantly associated QTL were observed on different chromosomes for both breeds. We have identified on chromosome 11 a QTL that explains ~6% of the total genetic variance of the maternal multiple birth trait in Original Braunvieh. For the Brown Swiss breed, we have discovered a QTL on chromosome 15 that accounts for ~4% of the total genetic variance. For Original Braunvieh, subsequent haplotype analysis revealed a 90-kb window on chromosome 11 at 88 Mb, where a likely regulatory region is located close to the ID2 gene. In Brown Swiss, a 130-kb window at 75 Mb on chromosome 15 was identified. Analysis of whole-genome sequence data using linkage-disequilibrium estimation revealed possible causal variants for the identified QTL. A presumably regulatory variant in the non-coding 5' region of the ID2 gene was strongly associated with the haplotype for Original Braunvieh. In Brown Swiss, an intron variant in PRDM11, one 3' UTR variant in SYT13 and three intergenic variants 5' upstream of SYT13 were identified as candidate variants for the trait multiple birth maternal. In this study, we report for the first time QTL for the trait of multiple births in Original Braunvieh and Brown Swiss cattle. Moreover, our findings are another step towards a better understanding of the complex genetic architecture of this polygenic trait.


Subject(s)
Genome-Wide Association Study , Multiple Birth Offspring , Pregnancy, Animal , Quantitative Trait Loci , Animals , Cattle/genetics , Chromosomes , Female , Genome-Wide Association Study/veterinary , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy, Animal/genetics , Synaptotagmins/genetics
13.
Sci Rep ; 12(1): 5435, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361830

ABSTRACT

Mendelian variants can determine both insemination success and neonatal survival and thus influence fertility and rearing success of cattle. We present 24 deficient homozygous haplotype regions in the Holstein population of Switzerland and provide an overview of the previously identified haplotypes in the global Holstein breed. This study encompasses massive genotyping, whole-genome sequencing (WGS) and phenotype association analyses. We performed haplotype screenings on almost 53 thousand genotyped animals including 114 k SNP data with two different approaches. We revealed significant haplotype associations to several survival, birth and fertility traits. Within haplotype regions, we mined WGS data of hundreds of bovine genomes for candidate causal variants, which were subsequently evaluated by using a custom genotyping array in several thousand breeding animals. With this approach, we confirmed the known deleterious SMC2:p.Phe1135Ser missense variant associated with Holstein haplotype (HH) 3. For two previously reported deficient homozygous haplotypes that show negative associations to female fertility traits, we propose candidate causative loss-of-function variants: the HH13-related KIR2DS1:p.Gln159* nonsense variant and the HH21-related NOTCH3:p.Cys44del deletion. In addition, we propose the RIOX1:p.Ala133_Glu142del deletion as well as the PCDH15:p.Leu867Val missense variant to explain the unexpected low number of homozygous haplotype carriers for HH25 and HH35, respectively. In conclusion, we demonstrate that with mining massive SNP data in combination with WGS data, we can map several haplotype regions and unravel novel recessive protein-changing variants segregating at frequencies of 1 to 5%. Our findings both confirm previously identified loci and expand the spectrum of undesired alleles impairing reproduction success in Holstein cattle, the world's most important dairy breed.


Subject(s)
Fertility , Alleles , Animals , Cattle/genetics , Female , Fertility/genetics , Genotype , Haplotypes , Homozygote
14.
Anim Genet ; 53(3): 416-421, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35233794

ABSTRACT

Inherited forms of cataract are a heterogeneous group of eye disorders known in livestock species. Clinicopathological analysis of a single case of impaired vision in a newborn Original Braunvieh calf revealed nuclear cataract. Whole-genome sequencing of the parent-offspring trio revealed a de novo mutation of ADAMTSL4 in this case. The heterozygous p.Arg776His missense variant affects a conserved residue of the ADAMTSL4 gene that encodes a secreted glycoprotein expressed in the lens throughout embryonic development. In humans, ADAMTSL4 genetic variants cause recessively inherited forms of subluxation of the lens. Given that ADAMTSL4 is a functional candidate gene for inherited disorders of the lens, we suggest that heterozygosity for the identified missense variant may have caused the congenital cataract in the affected calf. Cattle populations should be monitored for unexplained cataract cases, with subsequent DNA sequencing a hypothesized pathogenic effect of heterozygous ADAMTSL4 variants could be confirmed.


Subject(s)
Cataract , Cattle Diseases , Animals , Cataract/genetics , Cataract/veterinary , Cattle/genetics , Cattle Diseases/genetics , Mutation, Missense , Pedigree , Whole Genome Sequencing
15.
BMC Vet Res ; 18(1): 20, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996433

ABSTRACT

BACKGROUND: Ichthyosis describes a localized or generalized hereditary cornification disorder caused by an impaired terminal keratinocyte differentiation resulting in excessive stratum corneum with the formation of more or less adherent scales. Ichthyosis affects humans and animals. Two rare bovine forms are reported, the severe harlequin ichthyosis and the less severe congenital ichthyosis, both characterized by a severe orthokeratotic lamellar hyperkeratosis. RESULTS: A 2-weeks-old purebred Scottish Highland calf was referred because of a syndrome resembling congenital ichthyosis. The clinical phenotype included diffuse alopecia and a markedly lichenified skin covered with large and excessive scales. Additionally, conjunctivitis and ulceration of the cornea were noted. Post-mortem examination revealed deep fissures in the diffusely thickened tongue and histopathological findings in the skin confirmed the clinical diagnosis. Whole-genome sequencing of the affected calf and comparison of the data with control genomes was performed. A search for private variants in known candidate genes for skin phenotypes including genes related with erosive and hyperkeratotic lesions revealed a single homozygous protein-changing variant, DSP: c.6893 C>A, or p.Ala2298Asp. The variant is predicted to change a highly conserved residue in the C-terminal plakin domain of the desmoplakin protein, which represents a main intracellular component of desmosomes, important intercellular adhesion molecules in various tissues including epidermis. Sanger sequencing confirmed the variant was homozygous in the affected calf and heterozygous in both parents. Further genotyping of 257 Scottish Highland animals from Switzerland revealed an estimated allele frequency of 1.2%. The mutant allele was absent in more than 4800 controls from various other cattle breeds. CONCLUSIONS: This study represents the first report of combined lesions compatible with congenital ichthyosis, alopecia, acantholysis of the tongue and corneal defects associated with a DSP missense variant as the most likely underlying cause. To the best of our knowledge, this study is also the first report of a DSP-related syndromic form of congenital ichthyosis in domestic animals. The results of our study enable genetic testing to avoid the unintentional occurrence of further affected cattle. The findings were added to the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002243-9913).


Subject(s)
Alopecia , Desmoplakins , Ichthyosis, Lamellar , Ichthyosis , Mutation, Missense , Alopecia/genetics , Alopecia/veterinary , Animals , Cattle , Desmoplakins/genetics , Female , Ichthyosis/genetics , Ichthyosis/veterinary , Ichthyosis, Lamellar/veterinary , Tongue
16.
J Vet Intern Med ; 36(1): 292-299, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34796979

ABSTRACT

Hemifacial microsomia (HFM) was diagnosed in a 9-day-old Romagnola calf. The condition was characterized by microtia of the left ear, anotia of the right ear, asymmetry of the face, and deafness. Magnetic resonance imaging revealed agenesis of the right pinna and both tympanic bullae, asymmetry of the temporal bones and temporomandibular joints, and right pontine meningocele. Brainstem auditory evoked responses confirmed the impaired auditory capacity. At gross post mortem examination, there was agenesis and hypoplasia of the right and the left external ear, respectively. No histological abnormalities were detected in the inner ears. A trio whole-genome sequencing approach was carried out and identified a private homozygous missense variant in LAMB1 affecting a conserved residue (p.Arg668Cys). Genotyping of 221 Romagnola bulls revealed a carrier prevalence <2%. This represents a report of a LAMB1-related autosomal recessive inherited disorder in domestic animals and adds LAMB1 to the candidate genes for HFM.


Subject(s)
Cattle Diseases , Goldenhar Syndrome , Animals , Cattle , Cattle Diseases/genetics , Facial Asymmetry/veterinary , Goldenhar Syndrome/veterinary , Homozygote , Laminin/genetics , Male , Mutation , Mutation, Missense
17.
Animals (Basel) ; 11(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34944310

ABSTRACT

We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. We used 115,000 phased SNP data of almost 10 thousand cattle with pedigree data. This revealed evidence for 11 genomic regions of 1.17 Mb on average, with haplotypes (SH1 to SH11) showing a significant depletion in homozygosity and an allele frequency between 3.2 and 10.6%. For the proposed haplotypes, it was unfortunately not possible to evaluate associations with fertility traits as no corresponding data were available. For each haplotype region, possible candidate genes were listed based on their known function in development and disease. Subsequent mining of single-nucleotide variants and short indels in the genomes of 23 sequenced haplotype carriers allowed us to identify three perfectly linked candidate causative protein-changing variants: a SH5-related DIS3:p.Ile678fs loss-of-function variant, a SH8-related CYP2B6:p.Ile313Asn missense variant, and a SH9-related NUBPL:p.Ser143Tyr missense variant. None of these variants occurred in homozygous state in any of more than 5200 sequenced cattle of various breeds. Selection against these alleles in order to reduce reproductive failure and animal loss is recommended.

18.
Genet Sel Evol ; 53(1): 95, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915862

ABSTRACT

BACKGROUND: This study was carried out on the two Braunvieh populations reared in Switzerland, the dairy Brown Swiss (BS) and the dual-purpose Original Braunvieh (OB). We performed a genome-wide analysis of array data of trios (sire, dam, and offspring) from the routine genomic selection to identify candidate regions showing missing homozygosity and phenotypic associations with five fertility, ten birth, and nine growth-related traits. In addition, genome-wide single SNP regression studies based on 114,890 single nucleotide polymorphisms (SNPs) for each of the two populations were performed. Furthermore, whole-genome sequencing data of 430 cattle including 70 putative haplotype carriers were mined to identify potential candidate variants that were validated by genotyping the current population using a custom array. RESULTS: Using a trio-based approach, we identified 38 haplotype regions for BS and five for OB that segregated at low to moderate frequencies. For the BS population, we confirmed two known haplotypes, BH1 and BH2. Twenty-four variants that potentially explained the missing homozygosity and associated traits were detected, in addition to the previously reported TUBD1:p.His210Arg variant associated with BH2. For example, for BS we identified a stop-gain variant (p.Arg57*) in the MRPL55 gene in the haplotype region on chromosome 7. This region is associated with the 'interval between first and last insemination' trait in our data, and the MRPL55 gene is known to be associated with early pregnancy loss in mice. In addition, we discuss candidate missense variants in the CPT1C, MARS2, and ACSL5 genes for haplotypes mapped in BS. In OB, we highlight a haplotype region on chromosome 19, which is potentially caused by a frameshift variant (p.Lys828fs) in the LIG3 gene, which is reported to be associated with early embryonic lethality in mice. Furthermore, we propose another potential causal missense variant in the TUBGCP5 gene for a haplotype mapped in OB. CONCLUSIONS: We describe, for the first time, several haplotype regions that segregate at low to moderate frequencies and provide evidence of causality by trait associations in the two populations of Swiss Braunvieh. We propose a list of six protein-changing variants as potentially causing missing homozygosity. These variants need to be functionally validated and incorporated in the breeding program.


Subject(s)
Genomics , Reproduction , Animals , Cattle/genetics , Fertility/genetics , Haplotypes , Mice , Phenotype , Reproduction/genetics
19.
Genes (Basel) ; 12(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34828398

ABSTRACT

Inherited channelopathies are a clinically and heritably heterogeneous group of disorders that result from ion channel dysfunction. The aim of this study was to characterize the clinicopathologic features of a Belgian Blue x Holstein crossbred calf with paradoxical myotonia congenita, craniofacial dysmorphism, and myelodysplasia, and to identify the most likely genetic etiology. The calf displayed episodes of exercise-induced generalized myotonic muscle stiffness accompanied by increase in serum potassium. It also showed slight flattening of the splanchnocranium with deviation to the right side. On gross pathology, myelodysplasia (hydrosyringomielia and segmental hypoplasia) in the lumbosacral intumescence region was noticed. Histopathology of the muscle profile revealed loss of the main shape in 5.3% of muscle fibers. Whole-genome sequencing revealed a heterozygous missense variant in KCNG1 affecting an evolutionary conserved residue (p.Trp416Cys). The mutation was predicted to be deleterious and to alter the pore helix of the ion transport domain of the transmembrane protein. The identified variant was present only in the affected calf and not seen in more than 5200 other sequenced bovine genomes. We speculate that the mutation occurred either as a parental germline mutation or post-zygotically in the developing embryo. This study implicates an important role for KCNG1 as a member of the potassium voltage-gated channel group in neurodegeneration. Providing the first possible KCNG1-related disease model, we have, therefore, identified a new potential candidate for related conditions both in animals and in humans. This study illustrates the enormous potential of phenotypically well-studied spontaneous mutants in domestic animals to provide new insights into the function of individual genes.


Subject(s)
Cattle Diseases/genetics , Channelopathies/veterinary , Myotonia Congenita/veterinary , Potassium Channels, Voltage-Gated/genetics , Animals , Cattle , Cattle Diseases/pathology , Channelopathies/genetics , Channelopathies/pathology , Inbreeding , Mutation , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Phenotype
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830323

ABSTRACT

Sporadic occurrence of inherited eye disorders has been reported in cattle but so far pathogenic variants were found only for rare forms of cataract but not for retinopathies. The aim of this study was to characterize the phenotype and the genetic aetiology of a recessive form of congenital day-blindness observed in several cases of purebred Original Braunvieh cattle. Electroretinography in an affected calf revealed absent cone-mediated function, whereas the rods continue to function normally. Brain areas involved in vision were morphologically normal. When targeting cones by immunofluorescence, a decrease in cone number and an accumulation of beta subunits of cone cyclic-nucleotide gated channel (CNGB3) in the outer plexiform layer of affected animals was obvious. Achromatopsia is a monogenic Mendelian disease characterized by the loss of cone photoreceptor function resulting in day-blindness, total color-blindness, and decreased central visual acuity. After SNP genotyping and subsequent homozygosity mapping with twelve affected cattle, we performed whole-genome sequencing and variant calling of three cases. We identified a single missense variant in the bovine CNGB3 gene situated in a ~2.5 Mb homozygous genome region on chromosome 14 shared between all cases. All affected cattle were homozygous carriers of the p.Asp251Asn mutation that was predicted to be deleterious, affecting an evolutionary conserved residue. In conclusion, we have evidence for the occurrence of a breed-specific novel CNGB3-related form of recessively inherited achromatopsia in Original Braunvieh cattle which we have designated OH1 showing an allele frequency of the deleterious allele of ~8%. The identification of carriers will enable selection against this inherited disorder. The studied cattle might serve as an animal model to further elucidate the function of CNGB3 in mammals.


Subject(s)
Alleles , Color Vision Defects/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Mutation, Missense , Protein Subunits/genetics , Retinal Cone Photoreceptor Cells/metabolism , Amino Acid Substitution , Animals , Asparagine/metabolism , Aspartic Acid/metabolism , Cattle , Color Vision Defects/diagnostic imaging , Color Vision Defects/metabolism , Color Vision Defects/pathology , Cyclic Nucleotide-Gated Cation Channels/deficiency , Electroretinography , Female , Gene Expression , Gene Frequency , Homozygote , Male , Phenotype , Protein Subunits/deficiency , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...