Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 19(1): e0285645, 2024.
Article in English | MEDLINE | ID: mdl-38198481

ABSTRACT

IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or organ dysfunction after the acute phase of infection, termed Post-Acute Sequelae of SARS-CoV-2 (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are poorly understood. The objectives of the Researching COVID to Enhance Recovery (RECOVER) tissue pathology study (RECOVER-Pathology) are to: (1) characterize prevalence and types of organ injury/disease and pathology occurring with PASC; (2) characterize the association of pathologic findings with clinical and other characteristics; (3) define the pathophysiology and mechanisms of PASC, and possible mediation via viral persistence; and (4) establish a post-mortem tissue biobank and post-mortem brain imaging biorepository. METHODS: RECOVER-Pathology is a cross-sectional study of decedents dying at least 15 days following initial SARS-CoV-2 infection. Eligible decedents must meet WHO criteria for suspected, probable, or confirmed infection and must be aged 18 years or more at the time of death. Enrollment occurs at 7 sites in four U.S. states and Washington, DC. Comprehensive autopsies are conducted according to a standardized protocol within 24 hours of death; tissue samples are sent to the PASC Biorepository for later analyses. Data on clinical history are collected from the medical records and/or next of kin. The primary study outcomes include an array of pathologic features organized by organ system. Causal inference methods will be employed to investigate associations between risk factors and pathologic outcomes. DISCUSSION: RECOVER-Pathology is the largest autopsy study addressing PASC among US adults. Results of this study are intended to elucidate mechanisms of organ injury and disease and enhance our understanding of the pathophysiology of PASC.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Cross-Sectional Studies , Post-Acute COVID-19 Syndrome , Disease Progression , Risk Factors
2.
Protein Sci ; 32(4): e4614, 2023 04.
Article in English | MEDLINE | ID: mdl-36870000

ABSTRACT

The introduction of an engineered aminoacyl-tRNA synthetase/tRNA pair enables site-specific incorporation of unnatural amino acids (uAAs) with functionalized side chains into proteins of interest. Genetic Code Expansion (GCE) via amber codon suppression confers functionalities to proteins but can also be used to temporally control the incorporation of genetically encoded elements into proteins. Here, we report an optimized GCE system (GCEXpress) for efficient and fast uAA incorporation. We demonstrate that GCEXpress can be used to efficiently alter the subcellular localization of proteins within living cells. We show that click labeling can resolve co-labeling problems of intercellular adhesive protein complexes. We apply this strategy to study the adhesion G protein-coupled receptor (aGPCR) ADGRE5/CD97 and its ligand CD55/DAF that play central roles in immune functions and oncological processes. Furthermore, we use GCEXpress to analyze the time course of ADGRE5-CD55 ligation and replenishment of mature receptor-ligand complexes. Supported by fluorescence recovery after photobleaching (FRAP) experiments our results show that ADGRE5 and CD55 form stable intercellular contacts that may support transmission of mechanical forces onto ADGRE5 in a ligand-dependent manner. We conclude that GCE in combination with biophysical measurements can be a useful approach to analyze the adhesive, mechanical and signaling properties of aGPCRs and their ligand interactions.


Subject(s)
Amino Acyl-tRNA Synthetases , Genetic Code , Ligands , Amino Acids/chemistry , Cloning, Molecular , Amino Acyl-tRNA Synthetases/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
3.
Nat Commun ; 14(1): 1160, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859433

ABSTRACT

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels. In the dark or ambient light, LAKI is inactive. However, alternating transdermal illumination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK current in nociceptors, enabling rapid control of pain and nociception in intact and freely moving mice and nematode. These results demonstrate, in vivo, the subcellular localization of TREK/TRESK at the nociceptor free nerve endings in which their acute inhibition is sufficient to induce pain, showing LAKI potential as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI gives the ability to reversibly remote-control pain in a non-invasive and physiological manner in naive animals, which has utility in basic and translational pain research but also in in vivo analgesic drug screening and validation, without the need of genetic manipulations or viral infection.


Subject(s)
Pain , Potassium Channels, Tandem Pore Domain , Animals , Mice , Drug Evaluation, Preclinical , Nociceptors , Nematoda , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
4.
Curr Opin Pharmacol ; 63: 102178, 2022 04.
Article in English | MEDLINE | ID: mdl-35065384

ABSTRACT

Photopharmacology allows for the remote control of ion channels and receptors by the application of light-sensitive compounds. Upon irradiation with light these molecules change their configuration, enabling channel modulation with both spatial and temporal resolution. For the control of potassium channel physiology mainly two approaches have evolved. Photoswitchable tethered ligands (PTLs) and freely diffusible photochromic ligands (PCLs), targeting K+ channels, serve to gain insights in neuronal functions of the brain and the heart, whereby the molecules have been refined in the past years with special focus on improving switching characteristics in terms of red-shifted wavelengths and temporal resolution. In this review we provide an overview about the application of these tools in studying potassium channels and neuronal circuit, highlighting recent developments towards future implementations.


Subject(s)
Neurons , Potassium Channels , Ligands
5.
Cell Chem Biol ; 28(11): 1648-1663.e16, 2021 11 18.
Article in English | MEDLINE | ID: mdl-33735619

ABSTRACT

Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.


Subject(s)
Azo Compounds/pharmacology , Potassium Channels/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Azo Compounds/chemistry , Cells, Cultured , Female , Humans , Ligands , Mice , Photochemical Processes , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/drug effects
6.
Neuroscientist ; 27(3): 268-284, 2021 06.
Article in English | MEDLINE | ID: mdl-32715910

ABSTRACT

Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Humans , Pain , Potassium Channels
7.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33373586

ABSTRACT

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Subject(s)
Potassium Channels, Voltage-Gated/metabolism , Protein Subunits/metabolism , Animals , Anoctamin-1/metabolism , Calcium/metabolism , Chloride Channels/metabolism , HEK293 Cells , Humans , Kidney Tubules, Proximal/metabolism , Mice , Mutant Proteins/metabolism , Peptides/metabolism , Polymorphism, Genetic , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Protein Binding , Protein Domains , Renin-Angiotensin System
8.
Sci Rep ; 10(1): 21700, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303916

ABSTRACT

Cystic fibrosis (CF) is characterized by chronic bacterial infections and heightened inflammation. Widespread ineffective antibiotic use has led to increased isolation of drug resistant bacterial strains from respiratory samples. (R)-roscovitine (Seliciclib) is a unique drug that has many benefits in CF studies. We sought to determine roscovitine's impact on macrophage function and killing of multi-drug resistant bacteria. Human blood monocytes were isolated from CF (F508del/F508del) and non-CF persons and derived into macrophages (MDMs). MDMs were infected with CF clinical isolates of B. cenocepacia and P. aeruginosa. MDMs were treated with (R)-roscovitine or its main hepatic metabolite (M3). Macrophage responses to infection and subsequent treatment were determined. (R)-roscovitine and M3 significantly increased killing of B. cenocepacia and P. aeruginosa in CF MDMs in a dose-dependent manner. (R)-roscovitine-mediated effects were partially dependent on CFTR and the TRPC6 channel. (R)-roscovitine-mediated killing of B. cenocepacia was enhanced by combination with the CFTR modulator tezacaftor/ivacaftor and/or the alternative CFTR modulator cysteamine. (R)-roscovitine also increased MDM CFTR function compared to tezacaftor/ivacaftor treatment alone. (R)-roscovitine increases CF macrophage-mediated killing of antibiotic-resistant bacteria. (R)-roscovitine also enhances other macrophage functions including CFTR-mediated ion efflux. Effects of (R)-roscovitine are greatest when combined with CFTR modulators or cysteamine, justifying further clinical testing of (R)-roscovitine or optimized derivatives.


Subject(s)
Burkholderia cenocepacia/immunology , Burkholderia cenocepacia/pathogenicity , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Macrophages/immunology , Phagocytosis/drug effects , Roscovitine/pharmacology , Roscovitine/therapeutic use , Adolescent , Adult , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cystic Fibrosis/immunology , Drug Therapy, Combination , Female , Humans , Male , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/pathogenicity , Young Adult
9.
ChemMedChem ; 13(10): 1028-1035, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29522264

ABSTRACT

Natural products have many health benefits, and their application can improve the quality of life. Recently, the diterpene (+)-larixol and its acetylated congeners demonstrated selective inhibition of the second-messenger-gated cation channel transient receptor potential canonical 6 (TRPC6) over its close isoforms TRPC3 and TRPC7. Building on this knowledge, we expanded these findings by chemical diversification of (+)-larixol mostly at position C6. Implementing high-throughput Ca2+ FLIPR screening assays and electrophysiological patch-clamp recordings, we showcase larixyl N-methylcarbamate, termed SH045, as a compound with nanomolar affinity and 13-fold subtype selectivity over TRPC3 in stably expressing HEK293 cells. Expanding on this finding, TRPC6 inhibition was also observed in rat pulmonary smooth muscle cells. Furthermore, treatment of isolated perfused lung preparations with SH045 led to a decrease in lung ischemia-reperfusion edema (LIRE), a life-threatening condition associated with TRPC6 that may occur after organ transplantation. Taken together, and given the inexpensive, straightforward, and scalable preparation of SH045, we report a TRPC6 blocker that holds promise for the translational treatment of LIRE.


Subject(s)
Diterpenes/pharmacology , Animals , Diterpenes/chemistry , Drug Discovery , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Molecular Structure , Rats , Small Molecule Libraries , TRPC Cation Channels , TRPC6 Cation Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...