Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(22): 6538-6544, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771703

ABSTRACT

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect. Upon electrical excitation, the system unequivocally shows polariton lasing from the topological defect using a carefully placed gold contact. Despite the presence of doping and electrical contacts, the polariton band structure clearly preserves its topological properties. At high excitation power the Mott density is exceeded, leading to highly efficient lasing in the weak coupling regime. This work is an important step toward applied topological lasers using vertical resonator microcavity structures.

2.
Sci Rep ; 14(1): 9990, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693329

ABSTRACT

Mass-deployable implementations for quantum communication require compact, reliable, and low-cost hardware solutions for photon generation, control and analysis. We present a fiber-pigtailed hybrid photonic circuit comprising nonlinear waveguides for photon-pair generation and a polymer interposer reaching 68 dB of pump suppression and photon separation based on a polarizing beam splitter with > 25 dB polarization extinction ratio. The optical stability of the hybrid assembly enhances the quality of the entanglement, and the efficient background suppression and photon routing further reduce accidental coincidences. We thus achieve a 96 - 8 + 3 % concurrence and a 96 - 5 + 2 % fidelity to a Bell state. The generated telecom-wavelength, time-bin entangled photon pairs are ideally suited for distributing Bell pairs over fiber networks with low dispersion.

3.
Sci Adv ; 10(15): eadi7346, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608017

ABSTRACT

A hybrid interface of solid-state single-photon sources and atomic quantum memories is a long sought-after goal in photonic quantum technologies. Here, we demonstrate deterministic storage and retrieval of light from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths. We store single photons from an indium arsenide quantum dot in a high-bandwidth rubidium vapor-based quantum memory, with a total internal memory efficiency of (12.9 ± 0.4)%. The signal-to-noise ratio of the retrieved light field is 18.2 ± 0.6, limited only by detector dark counts.

4.
Adv Sci (Weinh) ; 11(21): e2400672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605674

ABSTRACT

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.

5.
ACS Photonics ; 11(2): 395-403, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38405392

ABSTRACT

Many precision applications in the mid-infrared spectral range have strong constraints based on quantum effects that are expressed in particular noise characteristics. They limit, e.g., sensitivity and resolution of mid-infrared imaging and spectroscopic systems as well as the bit-error rate in optical free-space communication. Interband cascade lasers (ICLs) are a class of mid-infrared lasers exploiting interband transitions in type-II band alignment geometry. They are currently gaining significant importance for mid-infrared applications from < 3 to > 6 µm wavelength, enabled by novel types of high-performance ICLs such as ring-cavity devices. Their noise behavior is an important feature that still needs to be thoroughly analyzed, including its potential reduction with respect to the shot-noise limit. In this work, we provide a comprehensive characterization of λ = 3.8 µm-emitting, continuous-wave ring ICLs operating at room temperature. It is based on an in-depth study of their main physical intensity noise features such as their bias-dependent intensity noise power spectral density and relative intensity noise. We obtained shot-noise-limited statistics for Fourier frequencies above 100 kHz. This is an important result for precision applications, e.g., interferometry or advanced spectroscopy, which benefit from exploiting the advantage of using such a shot-noise-limited source, enhancing the setup sensitivity. Moreover, it is an important feature for novel quantum optics schemes, including testing specific light states below the shot-noise level, such as squeezed states.

6.
ACS Photonics ; 11(2): 596-603, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38405396

ABSTRACT

Solid-state quantum emitters embedded in circular Bragg resonators are attractive due to their ability to emit quantum light with high brightness and low multiphoton probability. As for any emitter-microcavity system, fabrication imperfections limit the spatial and spectral overlap of the emitter with the cavity mode, thus limiting their coupling strength. Here, we show that an initial spectral mismatch can be corrected after device fabrication by repeated wet chemical etching steps. We demonstrate an ∼16 nm wavelength tuning for optical modes in AlGaAs resonators on oxide, leading to a 4-fold Purcell enhancement of the emission of single embedded GaAs quantum dots. Numerical calculations reproduce the observations and suggest that the achievable performance of the resonator is only marginally affected in the explored tuning range. We expect the method to be applicable also to circular Bragg resonators based on other material platforms, thus increasing the device yield of cavity-enhanced solid-state quantum emitters.

7.
Sci Adv ; 10(2): eadk6359, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198542

ABSTRACT

We report lasing of moiré trapped interlayer excitons (IXs) by integrating a pristine hBN-encapsulated MoSe2/WSe2 heterobilayer into a high-Q (>104) nanophotonic cavity. We control the cavity-IX detuning using a magnetic field and measure their dipolar coupling strength to be 78 ± 4 micro-electron volts, fully consistent with the 82 micro-electron volts predicted by theory. The emission from the cavity mode shows clear threshold-like behavior as the transition is tuned into resonance with the cavity. We observe a superlinear power dependence accompanied by a narrowing of the linewidth as the distinct features of lasing. The onset and prominence of these threshold-like behaviors are pronounced at resonance while weak off-resonance. Our results show that a lasing transition can be induced in interacting moiré IXs with macroscopic coherence extending over the length scale of the cavity mode. Such systems raise interesting perspectives for low-power switching and synaptic nanophotonic devices using two-dimensional materials.

8.
Phys Rev Lett ; 131(20): 206901, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38039456

ABSTRACT

Bosonic condensation and lasing of exciton polaritons in microcavities is a fascinating solid-state phenomenon. It provides a versatile platform to study out-of-equilibrium many-body physics and has recently appeared at the forefront of quantum technologies. Here, we study the photon statistics via the second-order temporal correlation function of polariton lasing emerging from an optical microcavity with an embedded atomically thin MoSe_{2} crystal. Furthermore, we investigate the macroscopic polariton phase transition for varying excitation powers and temperatures. The lower-polariton exhibits photon bunching below the threshold, implying a dominant thermal distribution of the emission, while above the threshold, the second-order correlation transits towards unity, which evidences the formation of a coherent state. Our findings are in agreement with a microscopic numerical model, which explicitly includes scattering with phonons on the quantum level.

9.
Opt Express ; 31(16): 26898-26909, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710539

ABSTRACT

We present an optical spectroscopic study of InGaAs/AlInAs active region of quantum cascade lasers grown by low pressure metal organic vapor phase epitaxy combined with subwavelength gratings fabricated by reactive ion etching. Fourier-transformed photoluminescence measurements were used to compare the emission properties of structures before and after processing the gratings. Our results demonstrate a significant increase of the photoluminescence intensity related to intersubband transitions in the mid-infrared, which is attributed to coupling with the grating modes via so called photonic Fano resonances. Our findings demonstrate a promising method for enhancing the emission in optoelectronic devices operating in a broad range of application-relevant infrared.

10.
Sci Adv ; 9(29): eadd7131, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37467336

ABSTRACT

The quantification of the entanglement present in a physical system is of paramount importance for fundamental research and many cutting-edge applications. Now, achieving this goal requires either a priori knowledge on the system or very demanding experimental procedures such as full state tomography or collective measurements. Here, we demonstrate that, by using neural networks, we can quantify the degree of entanglement without the need to know the full description of the quantum state. Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements. Despite using undersampled measurements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art quantum tomography. Furthermore, we achieve this result using networks trained using exclusively simulated data. Last, we derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.

11.
Nano Lett ; 23(10): 4564-4571, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37129463

ABSTRACT

The rotational response of quantum condensed fluids is strikingly distinct from rotating classical fluids, especially notable for the excitation and ordering of quantized vortex ensembles. Although widely studied in conservative systems, the dynamics of rotating open-dissipative superfluids such as exciton-polariton condensates remains largely unexplored, as it requires high-frequency rotation while avoiding resonantly driving the condensate. We create a rotating polariton condensate at gigahertz frequencies by off-resonantly pumping with a rotating optical stirrer composed of the time-dependent interference of two frequency-offset, structured laser modes. Acquisition of angular momentum exceeding the critical 1ℏ/particle is directly measured, accompanied by the deterministic nucleation and capture of quantized vortices with a handedness controlled by the pump rotation direction. The demonstration of controlled optical rotation of a spontaneously formed polariton condensate enables new opportunities for the study of open dissipative superfluidity, ordering of non-Hermitian quantized vortex matter, and topological states in a highly nonlinear, photonic platform.

12.
Phys Rev Lett ; 130(11): 113601, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001069

ABSTRACT

Long-term quantum coherence constitutes one of the main challenges when engineering quantum devices. However, easily accessible means to quantify complex decoherence mechanisms are not readily available, nor are sufficiently stable systems. We harness novel phase-space methods-expressed through non-Gaussian convolutions of highly singular Glauber-Sudarshan quasiprobabilities-to dynamically monitor quantum coherence in polariton condensates with significantly enhanced coherence times. Via intensity- and time-resolved reconstructions of such phase-space functions from homodyne detection data, we probe the systems' resourcefulness for quantum information processing up to the nanosecond regime. Our experimental findings are confirmed through numerical simulations, for which we develop an approach that renders established algorithms compatible with our methodology. In contrast to commonly applied phase-space functions, our distributions can be directly sampled from measured data, including uncertainties, and yield a simple operational measure of quantum coherence via the distribution's variance in phase. Therefore, we present a broadly applicable framework and a platform to explore time-dependent quantum phenomena and resources.

13.
Nano Lett ; 23(3): 820-826, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36656001

ABSTRACT

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode. We provide an in-depth study of Purcell enhancement for this topological quantum light source and demonstrate its emission of nonclassical light on demand. Our approach is a promising step toward the application of topological cavities in quantum photonics.

14.
Nat Commun ; 13(1): 6313, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274087

ABSTRACT

Optical spectroscopy of ultimately thin materials has significantly enhanced our understanding of collective excitations in low-dimensional semiconductors. This is particularly reflected by the rich physics of excitons in atomically thin crystals which uniquely arises from the interplay of strong Coulomb correlation, spin-orbit coupling (SOC), and lattice geometry. Here we extend the field by reporting the observation of room temperature excitons in a material of non-trivial global topology. We study the fundamental optical excitation spectrum of a single layer of bismuth atoms epitaxially grown on a SiC substrate (hereafter bismuthene or Bi/SiC) which has been established as a large-gap, two-dimensional (2D) quantum spin Hall (QSH) insulator. Strongly developed optical resonances are observed to emerge around the direct gap at the K and K' points of the Brillouin zone, indicating the formation of bound excitons with considerable oscillator strength. These experimental findings are corroborated, concerning both the character of the excitonic resonances as well as their energy scale, by ab-initio GW and Bethe-Salpeter equation calculations, confirming strong Coulomb interaction effects in these optical excitations. Our observations provide evidence of excitons in a 2D QSH insulator at room temperature, with excitonic and topological physics deriving from the very same electronic structure.

15.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221446

ABSTRACT

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

16.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35889583

ABSTRACT

Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown.

17.
Phys Rev Lett ; 129(3): 033601, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905333

ABSTRACT

The generation of photon pairs in quantum dots is in its nature deterministic. However, efficient extraction of photon pairs from the high index semiconductor material requires engineering of the photonic environment. We report on a micropillar device with 69.4(10)% efficiency that features broadband operation suitable for extraction of photon pairs. Opposing the approaches that rely solely on Purcell enhancement to realize the enhancement of the extraction efficiency, our solution exploits a suppression of the emission into the modes other than the cavity mode. Furthermore, the design of the device can be further optimized to allow for an extraction efficiency of 85%.

18.
Nat Commun ; 13(1): 3001, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637218

ABSTRACT

Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modes in the optical bandgap with the lower polariton mode pushed below the WSe2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation.

19.
Nano Lett ; 22(9): 3562-3568, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35486678

ABSTRACT

Resonance fluorescence of two-level quantum systems has emerged as a powerful tool in quantum information processing. Extension of this approach to higher-level systems provides new opportunities for quantum optics applications. Here we introduce an all-optical tuning functionality into a well-established resonance fluorescence coherent driving scheme. We accomplish this by resonant excitation of a three-level ladder system with two laser fields utilizing Autler-Townes and ac Stark effects. We propose theoretically and demonstrate experimentally the feasibility of this approach toward all-optical spectral tuning of quantum-dot-based single-photon sources and investigate photon indistinguishability and purity levels. Our tuning technique allows for fast optical control of the quantum emitter spectrum which paves the way toward temporal and spectral shaping of the single photons, formation of topological Floquet states, or generation of high-dimensional frequency-encoded quantum states of light.

20.
Phys Rev Lett ; 128(8): 087401, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35275663

ABSTRACT

Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe_{2} van der Waals heterostructure at room temperature. Our approach reveals a rich multibranch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...