Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
Add more filters










Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 4): 423-429, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38584744

ABSTRACT

In the title mol-ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N-H⋯O and C-H⋯O hydrogen bonds form helical chains of mol-ecules extending parallel to the c axis that are connected by C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol-ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state. Moreover, the HOMO-LUMO behaviour was elucidated to determine the energy gap.

2.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 262-266, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38456046

ABSTRACT

The title mol-ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C-H⋯π(ring) inter-actions lead to the formation of layers, which are connected by further C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter-actions. Hydrogen bonding, C-H⋯π(ring) inter-actions and van der Waals inter-actions dominate the crystal packing.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 2): 232-239, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38333114

ABSTRACT

The in-do-line portion of the title mol-ecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C-H⋯O hydrogen bonds and C-H⋯π(ring), π-stacking and C=O⋯π(ring) inter-actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state.

4.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 2): 240-246, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38333130

ABSTRACT

The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (P ), although the trans disposition of substituents about the central C-C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N-H⋯N hydrogen bonds form chains of mol-ecules extending along the c-axis direction that are connected by inversion-related pairs of O-H⋯N into ribbons. The ribbons are linked by C-H⋯π(ring) inter-actions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 11): 1037-1043, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37936855

ABSTRACT

In the title mol-ecule, C8H7NO3S, the nitro-gen atom has a planar environment, and the thia-zine ring exhibits a screw-boat conformation. In the crystal, corrugated layers of mol-ecules parallel to the ab plane are formed by N-H⋯O and C-H⋯O hydrogen bonds together with C-H⋯π(ring) and S=O⋯π(ring) inter-actions. The layers are connected by additional C-H⋯O hydrogen bonds and π-stacking inter-actions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (49.4%), H⋯H (23.0%) and H⋯C/C⋯H (14.1%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated as 75.4 Å3 and 9.3%. Density functional theory (DFT) computations revealed N-H⋯O and C-H⋯O hydrogen-bonding energies of 43.3, 34.7 and 34.4 kJ mol-1, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the electrostatic energy contribution. Moreover, the DFT-optimized structure at the B3LYP/ 6-311 G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

6.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 11): 1033-1036, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37936861

ABSTRACT

In the title compound, C20H28BrNO2, the indoline portion is almost planar and the 12-bromo-dodecyl chain adopts an all-trans conformation apart from the gauche terminal C-C-C-Br fragment. A micellar-like structure is generated in the crystal by C-H⋯O hydrogen bonds and π-stacking inter-actions between indolinedione head groups and inter-calation of the 12-bromo-dodecyl tails. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (58.9%), H⋯O/O⋯H (17.9%) and H⋯Br/Br⋯H (9.5%) contacts. A density functional theory (DFT) optimized structure at the B3LYP/ 6-311 G(d,p) level shows good agreement with the experimentally determined mol-ecular structure in the solid state.

7.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 895-898, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37817954

ABSTRACT

The asymmetric unit of the title compound, C12H13N3O4, consists of two mol-ecules differing to a small degree in their conformations. In the crystal, layers of mol-ecules are connected by weak C-H⋯O hydrogen bonds and slipped π-stacking inter-actions. These layers lie parallel to (10) and are stacked along the normal to that plane. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing arise from H⋯H (43.5%) and H⋯O/O⋯H (30.8%) contacts. The density functional theory (DFT) optimized structure of the title compound at the B3LYP/ 6-311 G(d,p) level agrees well with the experimentally determined mol-ecular structure in the solid state.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 883-889, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37817963

ABSTRACT

In the title mol-ecule, C14H11NO3, the di-hydro-quinoline core deviates slightly from planarity, indicated by the dihedral angle of 1.07 (3)° between the two six-membered rings. In the crystal, layers of mol-ecules almost parallel to the bc plane are formed by C-H⋯O hydro-gen bonds. These are joined by π-π stacking inter-actions. A Hirshfeld surface analysis revealed that the most important contributions to the crystal packing are from H⋯H (36.0%), H⋯C/C⋯H (28.9%) and H⋯O/O⋯H (23.5%) inter-actions. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the dispersion energy contribution. Moreover, the mol-ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311G(d,p) level is com-pared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

9.
ACS Omega ; 8(35): 31839-31856, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692230

ABSTRACT

We report herein a new 1,2,3-triazole derivative, namely, 4-((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-hydroxybenzaldehyde, which was synthesized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The structure of the compound was analyzed using Fourier transform infrared spectroscopy (FTIR), 1H NMR, 13C NMR, UV-vis, and elemental analyses. Moreover, X-ray crystallography studies demonstrated that the compound adapted a monoclinic crystal system with the P21/c space group. The dominant interactions formed in the crystal packing were found to be hydrogen bonding and van der Waals interactions according to Hirshfeld surface (HS) analysis. The volume of the crystal voids and the percentage of free spaces in the unit cell were calculated as 152.10 Å3 and 9.80%, respectively. The evaluation of energy frameworks showed that stabilization of the compound was dominated by dispersion energy contributions. Both in vitro and in silico investigations on the DNA/bovine serum albumin (BSA) binding activity of the compound showed that the CT-DNA binding activity of the compound was mediated via intercalation and BSA binding activity was mediated via both polar and hydrophobic interactions. The anticancer activity of the compound was also tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using human cell lines including MDA-MB-231, LNCaP, Caco-2, and HEK-293. The compound exhibited more cytotoxic activity than cisplatin and etoposide on Caco-2 cancer cell lines with an IC50 value of 16.63 ± 0.27 µM after 48 h. Annexin V suggests the induction of cell death by apoptosis. Compound 3 significantly increased the loss of mitochondrial membrane potential (MMP) levels in Caco-2 cells, and the reactive oxygen species (ROS) assay proved that compound 3 could induce apoptosis by ROS generation.

10.
BMC Chem ; 17(1): 95, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550776

ABSTRACT

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, ß = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.

11.
J Biomol Struct Dyn ; 41(1): 298-318, 2023 01.
Article in English | MEDLINE | ID: mdl-34821202

ABSTRACT

The starting compound, tetrachloro-4-fluorobenzyl-spiro(N/O)cyclotriphosphazene (2), was synthesized from the substitution reaction of hexachlorocyclotriphosphazatriene (N3P3Cl6; trimer; HCCP) with sodium 3-(4-fluorobenzylamino)-1-propanoxide (1). Reactions of spiro (2) with excess 1-(2-aminoethyl)-piperidine, 4-(2-aminoethyl)-morpholine, 1-(2-hydroxyethyl)piperidine and 4-(2-aminoethyl)morpholine yielded the fully substituted cyclotriphosphazene derivatives (2a-2d), respectively. Elemental analysis, mass spectrometry (ESI-MS), FTIR, 1H-, 13C- and 31P-NMR data confirmed the structure of the new cyclotriphosphazenes (2a-2d); and the crystal structure of 2 was also identified by X-ray crystallography. The quantum mechanical DFT calculations of 2 were performed to estimate the geometry optimization, total energy, orientation of frontier molecular orbitals (HOMOs and LUMOs), and chemical parameters. In addition, antibacterial and antifungal activities of the fully substituted 4-fluorobenzyl-spiro(N/O)cyclotriphosphazenes (2a-2d) were investigated against G(+) and G(-) bacteria and fungi. Using agarose gel electrophoresis, the DNA cleavage activities of these phosphazenes on double-stranded plasmid DNA were evaluated. To evaluate the abilities of compounds 2a-2d to inhibit cell proliferation in different concentrations, the antiproliferative and antimigrative activities against prostate adenocarcinoma (PC3), breast cancer (MCF7) and colon cancer (HT29) cell lines were studied in vitro; and the compound 2c was determined to be the most efficient against the three cancer cells.Communicated by Ramaswamy H. Sarma.


Subject(s)
Nitrogen Compounds , Phosphorus , Phosphorus/chemistry , Nitrogen Compounds/chemistry , Nitrogen/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Crystallography, X-Ray
12.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 12): 1179-1182, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38313122

ABSTRACT

The title mol-ecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C-H⋯O hydrogen bonds form chains of mol-ecules extending along the b-axis direction, which are linked by weak C-H⋯N hydrogen bonds and C-H⋯π inter-actions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) inter-actions.

13.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 12): 1183-1189, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38313136

ABSTRACT

In the title mol-ecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N-H⋯O, N-H⋯N and C-H⋯O hydrogen-bonding and slipped π-π stacking inter-actions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) inter-actions, showing that hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The mol-ecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO-LUMO behaviour was also elucidated to determine the energy gap.

14.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361953

ABSTRACT

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Subject(s)
Monophenol Monooxygenase , Ribonucleotide Reductases , Thiones/pharmacology , Molecular Docking Simulation , Acetophenones/pharmacology , DNA
15.
Front Chem ; 10: 992701, 2022.
Article in English | MEDLINE | ID: mdl-36226116

ABSTRACT

The crystal structure of N-((4-acetylphenyl)carbamothioyl)pivalamide (3) was synthesized by inert refluxing pivaloyl isothiocyanate (2) and 4-aminoacetophenone in dry acetone. The spectroscopic characterization (1H-NMR, 13CNMR, FT-IR) and single crystal assays determined the structure of synthesized compound (3). Systematic experimental and theoretical studies were conducted to determine the molecular characteristics of the synthesized crystal. The biological examination of (3) was conducted against a variety of enzymes i.e., acetyl cholinesterase (AChE), butyl cholinesterase (BChE), alpha amylase, and urease enzyme were evaluated. The crystal exhibited approximately 85% enzyme inhibition activity against BChE and AChE, but only 73.8 % and 57.9% inhibition activity against urease and alpha amylase was observed respectively. The theoretical calculations were conducted using density functional theory studies (DFTs) with the 6-31G (d, p) basis set and B3LYP functional correlation. The Frontier molecular orbital analysis revealed that the HOMO/LUMO energy gap was smaller, which corresponds to the molecule's reactivity. In terms of reactivity, the chemical softness value was found to be in good agreement with experimental values. In Crystal structure analysis, the intramolecular N-H•••O hydrogen bond generates a S 6) ring motif and N-H•••O interactions exist in crystal structure between the centroids of neighboring parallel aromatic (C4-C9) rings with a centroid to centroid distance of 3.9766 (7)Å. These intermolecular interactions were useful in structural stabilization. The Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis of the crystal structure the most substantial contributions to the crystal packing are from H ••• O and H ••• N/N ••• H interactions. Molecular docking studies were conducted to evaluate the binding orientation of synthesized crystal with multiple targets. The compound exhibited stronger interactions with AChE and BChE with binding energies of -7.5 and -7.6 kcal/mol, respectively. On the basis of in-vitro and in-silico findings, it is deduced that N-((4-acetylphenyl)carbamothioyl)pivalamide 3) possesses reactive and potent multiple target inhibitory properties.

16.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 953-960, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36072525

ABSTRACT

In the title mol-ecule, C7H6N4O3, the bicyclic ring system is planar with the carb-oxy-methyl group inclined by 81.05 (5)° to this plane. In the crystal, corrugated layers parallel to (010) are generated by N-H⋯O, O-H⋯N and C-H⋯O hydrogen-bonding inter-actions. The layers are associated through C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (34.8%), H⋯N/N⋯H (19.3%) and H⋯H (18.1%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated to be 176.30 Å3 and 10.94%, showing that there is no large cavity in the crystal packing. Computational methods revealed O-H⋯N, N-H⋯O and C-H⋯O hydrogen-bonding energies of 76.3, 55.2, 32.8 and 19.1 kJ mol-1, respectively. Evaluations of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via dispersion energy contributions. Moreover, the optimized mol-ecular structure, using density functional theory (DFT) at the B3LYP/6-311G(d,p) level, was compared with the experimentally determined one. The HOMO-LUMO energy gap was determined and the mol-ecular electrostatic potential (MEP) surface was calculated at the B3LYP/6-31G level to predict sites for electrophilic and nucleophilic attacks.

17.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 8): 864-870, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974825

ABSTRACT

The asymmetric unit of the title compound, C14H13NO4, contains three independent mol-ecules, which differ slightly in conformation. Each contains an intra-molecular N-H⋯O hydrogen bond. In the crystal, O-H⋯O hydrogen bonds form chains of mol-ecules, which are linked into corrugated sheets parallel to (03) plane by C-H⋯O hydrogen bonds together with π inter-actions between the carbonyl groups and the 2-hy-droxy-phenyl rings. The layers are linked by further C-H⋯O hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯O/O⋯H (28.3%) and H⋯C/C⋯H (10.9%) inter-actions. van der Waals inter-actions are the dominant inter-actions in the crystal packing. Moreover, density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behavior was elucidated to determine the energy gap of 4.53 eV.

18.
RSC Adv ; 12(27): 17194-17207, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35755589

ABSTRACT

N-((4-Acetylphenyl)carbamothioyl)-2,4-dichlorobenzamide (4) was synthesized by the treatment of 2,4-dichlorobenzoyl chloride with potassium thiocyanate in a 1 : 1 molar ratio in dry acetone to afford the 2,4-dichlorobenzoyl isothiocyanate in situ which on reaction with acetyl aniline furnished (4) in good yield and high purity. The compound was confirmed by FTIR, 1H-NMR, and 13C-NMR and single crystal X-ray diffraction studies. The planar rings were situated at a dihedral angle of 33.32(6)°. The molecules, forming S(6) ring motifs with the intramolecular N-H⋯O hydrogen bonds, were linked through intermolecular C-H⋯O and N-H⋯S hydrogen bonds, enclosing R2 2(8) ring motifs, into infinite double chains along [101]. C-H⋯π and π⋯π interactions with an inter-centroid distance of 3.694 (1) Å helped to consolidate a three-dimensional architecture. Hirshfeld surface (HS) analysis further indicated that the most important contributions for the crystal packing were from H⋯C/C⋯H (20.9%), H⋯H (20.5%), H⋯Cl/Cl⋯H (19.4%), H⋯O/O⋯H (13.8%) and H⋯S/S⋯H (8.9%) interactions. Thus C-H⋯π (ring), π⋯π, van der Waals interactions and hydrogen bonding played the major roles in the crystal packing. The electronic structure and computed DFT (density functional theory) parameters identified the reactivity profile of compound (4). In silico binding of (4) with RNA indicated the formation of a stable protein-ligand complex via hydrogen bonding, while DNA docking studies inferred (4) as a potent groove binder. The experimentally observed hypochromic change (57.2%) in the UV-visible spectrum of (4) in the presence of varying DNA concentrations together with the evaluated binding parameters (K b; 7.9 × 104 M-1, ΔG; -28.42 kJ mol-1) indicated spontaneous interaction of (4) with DNA via groove binding and hence supported the findings obtained through docking analysis. This compound also showed excellent urease inhibition activity in both in silico and vitro studies with an IC50 value of 0.0389 ± 0.0017 µM. However, the radical scavenging efficiency of (4) was found to be modest in comparison to vitamin C.

19.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 425-432, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35492275

ABSTRACT

In the title compound, C12H10ClNO3, the di-hydro-quinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)°. An intra-molecular C-H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol-ecules parallel to (10) are generated by C-H⋯O and C-H⋯Cl hydrogen bonds, and are stacked through slipped π-stacking inter-actions between inversion-related di-hydro-quinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (34.2%), H⋯O/O⋯H (19.9%), H⋯Cl/Cl⋯H (12.8%), H⋯C/C⋯H (10.3%) and C⋯C (9.7%) inter-actions. Computational chemistry indicates that in the crystal, the C-H⋯Cl hydrogen-bond energy is -37.4 kJ mol-1, while the C-H⋯O hydrogen-bond energies are -45.4 and -29.2 kJ mol-1. An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated via the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state, and the HOMO-LUMO behaviour was elucidated to determine the energy gap.

20.
Mol Divers ; 26(2): 1077-1100, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33988806

ABSTRACT

Mono-/dispirocyclotriphosphazenes with pendant arm(s) are robust, but they are less investigated inorganic ring systems. In this study, a series of mono (3 and 4)- and dispirocyclotriphosphazenes with 4-chloro-benzyl pendant arm(s) (13-16) was obtained from the Cl exchange reactions of hexachlorocyclotriphosphazene with sodium (N-benzyl)aminopropanoxides (1 and 2). When compound (3) reacted with excess pyrrolidine, morpholine, tetra-1,4-dioxa-8-azaspiro[4,5]decane (DASD) and piperidine, the fully substituted monospirocyclotriphosphazenes (7, 9, 10 and 12) occurred. But, the reactions of 4 with excess piperidine and morpholine produced the gem-piperidino (5)- and morpholino (6)-substituted monospirocyclotriphosphazenes, whereas the reactions of 4 with excess pyrrolidine and DASD gave the fully substituted monospirocyclotriphosphazenes (8) and (11). However, it should be indicated that these derivatives were obtained to be used for the investigation of their spectral, stereogenic and biological properties. The structures of 5, 7 and 14 were determined crystallographically. X-ray data of 5 and 14 displayed that both of compounds were chiral in solid state, and their absolute configurations were assigned as R and RR. Additionally, the antimicrobial activities of phosphazenes were investigated. Minimum inhibitory concentrations, minimal bacterial concentrations and minimum fungicidal concentrations of phosphazenes were determined. The interactions of phosphazenes with plasmid DNA were evaluated by agarose gel electrophoresis. The cytotoxic activities of compounds were studied against L929 fibroblast and DLD-1 colon cancer cells. In addition, density functional theory calculations of 5, 7 and 14 were reported, and their molecular docking studies with DNA, E. coli DNA gyrase and topoisomerase IV were presented.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Crystallography, X-Ray , DNA/chemistry , Escherichia coli , Microbial Sensitivity Tests , Molecular Docking Simulation , Morpholines , Nitrogen/chemistry , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Phosphorus/chemistry , Piperidines , Pyrrolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...