Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Phys B ; 126(11): 176, 2020.
Article in English | MEDLINE | ID: mdl-33088025

ABSTRACT

We study a method for mass-selective removal of ions from a Paul trap by parametric excitation. This can be achieved by applying an oscillating electric quadrupole field at twice the secular frequency ω sec using pairs of opposing electrodes. While excitation near the resonance with the secular frequency ω sec only leads to a linear increase of the amplitude with excitation duration, parametric excitation near 2 ω sec results in an exponential increase of the amplitude. This enables efficient removal of ions from the trap with modest excitation voltages and narrow bandwidth, therefore, substantially reducing the disturbance of ions with other charge-to-mass ratios. We numerically study and compare the mass selectivity of the two methods. In addition, we experimentally show that the barium isotopes with 136 and 137 nucleons can be removed from small ion crystals and ejected out of the trap while keeping 138 Ba + ions Doppler cooled, corresponding to a mass selectivity of better than Δ m / m = 1 / 138 . This method can be widely applied to ion trapping experiments without major modifications since it only requires modulating the potential of the ion trap.

2.
Biomacromolecules ; 11(7): 1802-9, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20672861

ABSTRACT

A copolymer-protected gene vector (COPROG) is a three-component gene delivery system consisting of a preformed DNA and branched polyethylenimine (bPEI) complex subsequently modified by the addition of a copolymer (P6YE5C) incorporating both poly(ethylene glycol) (PEG) and anionic peptides. Using fluorescence correlation spectroscopy (FCS) and atomic force microscopy (AFM), we characterized and compared the self-assembly of bPEI/DNA particles and COPROG complexes. In low salt buffer, both bPEI/DNA and COPROG formulations form stable nanoparticles with hydrodynamic radii between 60-120 nm. COPROG particles, as compared to bPEI/DNA, show greatly improved particle stability to both physiological salt as well as low pH conditions. Binding stoichiometry of the three-component COPROG system was investigated by dual-color fluorescence cross-correlation spectroscopy (FCCS). It was found that a significant fraction of P6YE5C copolymer aggregates with excess bPEI forming bPEI/P6YE5C "ghost complexes" with no DNA inside. The ratio of ghost particles to COPROG complexes is about 4:1. In addition, we find a large fraction of excess P6YE5C copolymer, which remains unbound in solution. We observe a 2-4-fold enhanced reporter gene expression with COPROG formulations at various equivalents as compared to bPEI-DNA alone. We believe that both complex stabilization as well as the capture of excess bPEI into ghost particles induced by the copolymer is responsible for the improvement in gene expression.


Subject(s)
Drug Carriers/chemistry , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Polymers/chemistry , DNA/administration & dosage , Drug Carriers/therapeutic use , Drug Stability , Gene Expression , Genes, Reporter , Nanoparticles/chemistry , Peptides , Polyethylene Glycols , Polyethyleneimine , Polymers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL