Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(1): 968-974, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117751

ABSTRACT

Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.

2.
Biomacromolecules ; 23(11): 4655-4667, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36215725

ABSTRACT

The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with ß-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.


Subject(s)
Hydrogen Peroxide , Polymers , Metallocenes , Hydrogen-Ion Concentration , Polymers/pharmacology , Oxidation-Reduction , Peroxidases
3.
J Clin Oncol ; 39(15): 1619-1630, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33780288

ABSTRACT

PURPOSE: Among patients with metastatic breast cancer (mBC), the frequency of germline mutations in cancer susceptibility genes and the clinical relevance of these mutations are unclear. In this study, a prospective cohort of patients with mBC was used to determine mutation rates for breast cancer (BC) predisposition genes, to evaluate the clinical characteristics of patients with mutations, and to assess the influence of mutations on patient outcome. PATIENTS AND METHODS: Germline DNA from 2,595 patients with mBC enrolled in the prospective PRAEGNANT registry was evaluated for mutations in cancer predisposition genes. The frequencies of mutations in known BC predisposition genes were compared with results from a prospective registry of patients with nonmetastatic BC sequenced using the same QIAseq method and with public reference controls. Associations between mutation status and tumor characteristics, progression-free survival, and overall survival were assessed. RESULTS: Germline mutations in 12 established BC predisposition genes (including BRCA1 and BRCA2) were detected in 271 (10.4%) patients. A mutation in BRCA1 or BRCA2 was seen in 129 patients (5.0%). BRCA1 mutation carriers had a higher proportion of brain metastasis (27.1%) compared with nonmutation carriers (12.8%). Mutations were significantly enriched in PRAEGNANT patients with mBC compared with patients with nonmetastatic BC (10.4% v 6.6%, P < .01). Mutations did not significantly modify progression-free survival or overall survival for patients with mBC. CONCLUSION: Multigene panel testing may be considered in all patients with mBC because of the high frequency of germline mutations in BRCA1/2 and other BC predisposition genes. Although the prognosis of mutation carriers and nonmutation carriers with mBC was similar, differences observed in tumor characteristics have implications for treatment and for future studies of targeted therapies.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Mutation , Neoplasm Metastasis , Prognosis
4.
Langmuir ; 36(15): 4015-4024, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32267702

ABSTRACT

Stimuli-responsive mesoporous silica films were prepared by evaporation-induced self-assembly through the physical entrapment of a functional metalloblock copolymer structuring agent, which simultaneously served to functionalize the mesopore. After end-functionalization with a silane group, the applied functional metalloblock copolymers were covalently integrated into the silica mesopore wall. In addition, they were partly degraded after the formation of the mesoporous film, which enabled the precise design of accessible mesopores. These polymer-silica hybrid materials exhibited remarkable and gating ionic permselectivity and offer the potential for highly precise pore filling design and combination with high-throughput printing techniques. This in situ functionalization strategy of mesoporous silica using responsive metalloblock copolymers has the potential to improve how we approach the design of complex architectures at the nanoscale for tailored transport. This functionalization strategy paves the way for a variety of technologies based on molecular transport in nanoscale pores, including separation, sensing, catalysis, and energy conversion.

5.
ACS Appl Mater Interfaces ; 10(4): 4018-4030, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29313330

ABSTRACT

Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.

SELECTION OF CITATIONS
SEARCH DETAIL
...