Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Aging ; 4(3): 350-363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472454

ABSTRACT

Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.


Subject(s)
Melanoma , Skin Neoplasms , Aged , Animals , Humans , Mice , Collagen/metabolism , Extracellular Matrix Proteins/genetics , Intercellular Adhesion Molecule-1/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Up-Regulation
2.
Cancer Res ; 84(8): 1221-1236, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38330147

ABSTRACT

Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE: Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Animals , Mice , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/therapeutic use , Proto-Oncogene Proteins c-akt , Pancreatic Neoplasms/pathology , Pancreas/pathology , Fibroblasts/pathology , Tumor Microenvironment , Cell Line, Tumor , Cancer-Associated Fibroblasts/pathology
3.
Exp Hematol Oncol ; 12(1): 29, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906639

ABSTRACT

Melanoma is the deadliest form of skin cancer showing rising incidence over the past years. New insights into the mechanisms of melanoma progression contributed to the development of novel treatment options, such as immunotherapies. However, acquiring resistance to treatment poses a big problem to therapy success. Therefore, understanding the mechanisms underlying resistance could improve therapy efficacy. Correlating expression levels in tissue samples of primary melanoma and metastases revealed that secretogranin 2 (SCG2) is highly expressed in advanced melanoma patients with poor overall survival (OS) rates. By conducting transcriptional analysis between SCG2-overexpressing (OE) and control melanoma cells, we detected a downregulation of components of the antigen presenting machinery (APM), which is important for the assembly of the MHC class I complex. Flow cytometry analysis revealed a downregulation of surface MHC class I expression on melanoma cells that showed resistance towards the cytotoxic activity of melanoma-specific T cells. IFNγ treatment partially reversed these effects. Based on our findings, we suggest that SCG2 might stimulate mechanisms of immune evasion and therefore be associated with resistance to checkpoint blockade and adoptive immunotherapy.

4.
Front Cell Neurosci ; 17: 1337768, 2023.
Article in English | MEDLINE | ID: mdl-38269116

ABSTRACT

In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.

5.
Nature ; 606(7913): 396-405, 2022 06.
Article in English | MEDLINE | ID: mdl-35650435

ABSTRACT

Disseminated cancer cells from primary tumours can seed in distal tissues, but may take several years to form overt metastases, a phenomenon that is termed tumour dormancy. Despite its importance in metastasis and residual disease, few studies have been able to successfully characterize dormancy within melanoma. Here we show that the aged lung microenvironment facilitates a permissive niche for efficient outgrowth of dormant disseminated cancer cells-in contrast to the aged skin, in which age-related changes suppress melanoma growth but drive dissemination. These microenvironmental complexities can be explained by the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1-3. It was previously shown that dermal fibroblasts promote phenotype switching in melanoma during ageing4-8. We now identify WNT5A as an activator of dormancy in melanoma disseminated cancer cells within the lung, which initially enables the efficient dissemination and seeding of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble WNT antagonist sFRP1, which inhibits WNT5A in melanoma cells and thereby enables efficient metastatic outgrowth. We also identify the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis within melanoma cells. Overall, we find that age-induced changes in distal metastatic microenvironments promote the efficient reactivation of dormant melanoma cells in the lung.


Subject(s)
Aging , Lung , Melanoma , Neoplasm Metastasis , Stromal Cells , Tumor Microenvironment , Aged , Aging/pathology , Fibroblasts/pathology , Humans , Lung/pathology , Melanoma/pathology , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Neoplasm, Residual , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Skin/pathology , Stromal Cells/pathology , Wnt-5a Protein , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
6.
Int J Cancer ; 149(3): 657-674, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33837564

ABSTRACT

Metastatic melanoma is an aggressive skin cancer and associated with a poor prognosis. In clinical terms, targeted therapy is one of the most important treatments for patients with BRAFV600E -mutated advanced melanoma. However, the development of resistance to this treatment compromises its therapeutic success. We previously demonstrated that forkhead box D1 (FOXD1) regulates melanoma migration and invasion. Here, we found that FOXD1 was highly expressed in melanoma cells and was associated with a poor survival of patients with metastatic melanoma. Upregulation of FOXD1 expression enhanced melanoma cells' resistance to vemurafenib (BRAF inhibitor [BRAFi]) or vemurafenib and cobimetinib (MEK inhibitor) combination treatment whereas loss of FOXD1 increased the sensitivity to treatment. By comparing gene expression levels between FOXD1 knockdown (KD) and overexpressing (OE) cells, we identified the connective tissue growth factor (CTGF) as a downstream factor of FOXD1. Chromatin immunoprecipitation and luciferase assay demonstrated the direct binding of FOXD1 to the CTGF promoter. Similar to FOXD1, knockdown of CTGF increased the sensitivity of BRAFi-resistant cells to vemurafenib. FOXD1 KD cells treated with recombinant CTGF protein were less sensitive towards vemurafenib compared to untreated FOXD1 KD cells. Based on these findings, we conclude that FOXD1 might be a promising new diagnostic marker and a therapeutic target for the treatment of targeted therapy resistant melanoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Dedifferentiation , Connective Tissue Growth Factor/metabolism , Drug Resistance, Neoplasm , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/drug therapy , Apoptosis , Azetidines/administration & dosage , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Connective Tissue Growth Factor/genetics , Forkhead Transcription Factors/genetics , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Molecular Targeted Therapy , Mutation , Piperidines/administration & dosage , Prognosis , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Vemurafenib/administration & dosage
7.
Am J Pathol ; 191(4): 618-630, 2021 04.
Article in English | MEDLINE | ID: mdl-33485866

ABSTRACT

CD24 is overexpressed in many human cancers and is a driver of tumor progression. Herein, molecular mechanisms leading to up-regulation of CD24 in prostate cancer were studied. DNA methylation of the CD24 gene promoter at four loci using quantitative methylation-specific PCR was evaluated. Expression of CD24 in tumor tissues was studied by immunohistochemistry. To corroborate the results in vitro, ERG-inducible LNCaP TMPRSS2:ERG (T2E) cells and luciferase promoter assays were used. DNA methylation of the CD24 promoter was significantly higher in tumors than in benign tissue and was associated with biochemical recurrence-free survival, tumor grade, and stage. CD24 mRNA and protein expression were significantly higher in T2E-positive, ERG-overexpressing, and/or PTEN-deficient cases. Higher levels of CD24 protein expression conferred shorter biochemical recurrence-free survival, and these observations were confirmed using The Cancer Genome Atlas prostate adenocarcinoma data. In silico analysis of the CD24 promoter revealed an ERG binding site in between the DNA methylation sites. ERG overexpression led to a strong induction of CD24 mRNA and protein expression. Luciferase promoter assays using the wild-type and mutated ERG binding site within the CD24 promoter showed ERG-dependent activation. Collectively, our results suggest that promoter DNA methylation of the CD24 gene and T2E fusion status are factors involved in the up-regulation of CD24 in patients with prostate cancer.


Subject(s)
CD24 Antigen/metabolism , DNA/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcriptional Regulator ERG/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA Methylation/physiology , Humans , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Trans-Activators/genetics , Transcriptional Regulator ERG/genetics
8.
Int J Cancer ; 148(3): 546-559, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32790899

ABSTRACT

CD24 is a highly glycosylated protein with a small protein core that is linked to the plasma membrane via a glycosyl-phosphatidylinositol anchor. CD24 is primarily expressed by immune cells but is often overexpressed in human tumors. In cancer, CD24 is a regulator of cell migration, invasion and proliferation. Its expression is associated with poor prognosis and it is used as cancer stemness marker. Recently, CD24 on tumor cells was identified as a phagocytic inhibitor ("do not eat me" signal) having a suppressive role in tumor immunity via binding to Siglec-10 on macrophages. This finding is reminiscent of the demonstration that soluble CD24-Fc can dampen the immune system in autoimmune disease. In the present review, we summarize recent progress on the role of the CD24-Siglec-10 binding axis at the interface between tumor cells and the immune system, and the role of CD24 genetic polymorphisms in cancer. We describe the specific function of cytoplasmic CD24 and discuss the presence of CD24 on tumor-released extracellular vesicles. Finally, we evaluate the potential of CD24-based immunotherapy.


Subject(s)
CD24 Antigen/genetics , CD24 Antigen/metabolism , Lectins/metabolism , Neoplasms/genetics , Receptors, Cell Surface/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/metabolism , Polymorphism, Genetic , Prognosis
9.
Cancers (Basel) ; 12(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327495

ABSTRACT

Melanoma is an aggressive form of skin cancer that is often characterized by activating mutations in the Mitogen-Activated Protein (MAP) kinase pathway, causing hyperproliferation of the cancer cells. Thus, inhibitors targeting this pathway were developed. These inhibitors are initially very effective, but the occurrence of resistance eventually leads to a failure of the therapy and is the major obstacle for clinical success. Therefore, investigating the mechanisms causing resistance and discovering ways to overcome them is essential for the success of therapy. Here, we observed that treatment of melanoma cells with the B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) inhibitor vemurafenib caused an increased cell surface expression and activation of human epidermal growth factor receptor 3 (HER3) by shed ligands. HER3 promoted the activation of signal transducer and activator of transcription 3 (STAT3) resulting in upregulation of the STAT3 target gene SRY-Box Transcription Factor 2 (SOX2) and survival of the cancer cells. Pharmacological blocking of HER led to a diminished STAT3 activation and increased sensitivity toward vemurafenib. Moreover, HER blocking sensitized vemurafenib-resistant cells to drug treatment. We conclude that the inhibition of the STAT3 upstream regulator HER might help to overcome melanoma therapy resistance toward targeted therapies.

10.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32788238

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSC) play a major role in the immunosuppressive melanoma microenvironment. They are generated under chronic inflammatory conditions characterized by the constant production of inflammatory cytokines, chemokines and growth factors, including IL-6. Recruitment of MDSC to the tumor is mediated by the interaction between chemokines and chemokine receptors, in particular C-C chemokine receptor (CCR)5. Here, we studied the mechanisms of CCR5 upregulation and increased immunosuppressive function of CCR5+ MDSC. METHODS: The immortalized myeloid suppressor cell line MSC-2, primary immature myeloid cells and in vitro differentiated MDSC were used to determine factors and molecular mechanisms regulating CCR5 expression and immunosuppressive markers at the mRNA and protein levels. The relevance of the identified pathways was validated on the RET transgenic mouse melanoma model, which was also used to target the identified pathways in vivo. RESULTS: IL-6 upregulated the expression of CCR5 and arginase 1 in MDSC by a STAT3-dependent mechanism. MDSC differentiated in the presence of IL-6 strongly inhibited CD8+ T cell functions compared with MDSC differentiated without IL-6. A correlation between IL-6 levels, phosphorylated STAT3 and CCR5 expression in tumor-infiltrating MDSC was demonstrated in the RET transgenic melanoma mouse model. Surprisingly, IL-6 overexpressing tumors grew significantly slower in mice accompanied by CD8+ T cell activation. Moreover, transgenic melanoma-bearing mice treated with IL-6 blocking antibodies showed significantly accelerated tumor development. CONCLUSION: Our in vitro and ex vivo findings demonstrated that IL-6 induced CCR5 expression and a strong immunosuppressive activity of MDSC, highlighting this cytokine as a promising target for melanoma immunotherapy. However, IL-6 blocking therapy did not prove to be effective in RET transgenic melanoma-bearing mice but rather aggravated tumor progression. Further studies are needed to identify particular combination therapies, cancer entities or patient subsets to benefit from the anti-IL-6 treatment.


Subject(s)
Interleukin-6/metabolism , Melanoma, Experimental/immunology , Myeloid-Derived Suppressor Cells/metabolism , Receptors, CCR5/metabolism , Animals , Humans , Mice
11.
Br J Cancer ; 122(7): 1023-1036, 2020 03.
Article in English | MEDLINE | ID: mdl-32063604

ABSTRACT

BACKGROUND: Drug resistance remains as one of the major challenges in melanoma therapy. It is well known that tumour cells undergo phenotypic switching during melanoma progression, increasing melanoma plasticity and resistance to mitogen-activated protein kinase inhibitors (MAPKi). METHODS: We investigated the melanoma phenotype switching using a partial reprogramming model to de-differentiate murine melanoma cells and target melanoma therapy adaptation against MAPKi. RESULTS: Here, we show that partially reprogrammed cells are a less proliferative and more de-differentiated cell population, expressing a gene signature for stemness and suppressing melanocyte-specific markers. To investigate adaptation to MAPKi, cells were exposed to B-Raf Proto-Oncogene (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. De-differentiated cells became less sensitive to MAPKi, showed increased cell viability and decreased apoptosis. Furthermore, T-type calcium channels expression increased in adaptive murine cells and in human adaptive melanoma cells. Treatment with the calcium channel blocker mibefradil induced cell death, differentiation and susceptibility to MAPKi in vitro and in vivo. CONCLUSION: In summary, we show that partial reprogramming of melanoma cells induces de-differentiation and adaptation to MAPKi. Moreover, we postulated a calcium channel blocker such as mibefradil, as a potential candidate to restore sensitivity to MAPKi in adaptive melanoma cells.


Subject(s)
Calcium Channels, T-Type/genetics , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Disease Models, Animal , Female , Humans , Melanoma/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Mas
12.
Semin Cancer Biol ; 67(Pt 1): 74-82, 2020 12.
Article in English | MEDLINE | ID: mdl-31412296

ABSTRACT

The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.


Subject(s)
Neoplasms/pathology , Neoplastic Stem Cells/pathology , SOXB1 Transcription Factors/metabolism , Animals , Cell Proliferation , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction
13.
Cancer Res ; 79(18): 4715-4728, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31337655

ABSTRACT

Tumor cell-derived extracellular vesicles (EV) convert normal myeloid cells into myeloid-derived suppressor cells (MDSC), inhibiting antitumor immune responses. Here, we show that EV from Ret mouse melanoma cells upregulate the expression of programmed cell death ligand 1 (PD-L1) on mouse immature myeloid cells (IMC), leading to suppression of T-cell activation. PD-L1 expression and the immunosuppressive potential of EV-generated MDSC were dependent on the expression of Toll-like receptors (TLR). IMC from Tlr4-/- mice failed to increase T-cell PD-L1 expression and immunosuppression with Ret-EV treatment, and this effect was dependent on heat-shock protein 86 (HSP86) as HSP86-deficient Ret cells could not stimulate PD-L1 expression on normal IMC; IMC from Tlr2-/- and Tlr7-/- mice demonstrated similar results, although to a lesser extent. HSP86-deficient Ret cells slowed tumor progression in vivo associated with decreased frequency of tumor-infiltrating PD-L1+CD11b+Gr1+ MDSC. EV from human melanoma cells upregulated PD-L1 and immunosuppression of normal monocytes dependent on HSP86. These findings highlight a novel EV-mediated mechanism of MDSC generation from normal myeloid cells, suggesting the importance of EV targeting for tumor therapy. SIGNIFICANCE: These findings validate the importance of TLR4 signaling in reprogramming normal myeloid cells into functional myeloid-derived suppressor cells.


Subject(s)
B7-H1 Antigen/metabolism , Extracellular Vesicles/pathology , Immunosuppressive Agents/immunology , Melanoma/pathology , Myeloid-Derived Suppressor Cells/immunology , Toll-Like Receptor 4/physiology , Toll-Like Receptor 7/physiology , Animals , Cells, Cultured , Extracellular Vesicles/metabolism , Humans , Immune Tolerance , Immunosuppressive Agents/metabolism , Lymphocyte Activation , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , Monocytes/pathology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology
14.
Int J Cancer ; 145(12): 3462-3477, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31131878

ABSTRACT

Alterations in histone modifications play a crucial role in the progression of various types of cancer. The histone methyltransferase SETDB1 catalyzes the addition of methyl groups to histone H3 at lysine 9. Here, we describe how overexpression of SETDB1 contributes to melanoma tumorigenesis. SETDB1 is highly amplified in melanoma cells and in the patient tumors. Increased expression of SETDB1, which correlates with SETDB1 amplification, is associated with a more aggressive phenotype in in vitro and in vivo studies. Mechanistically, SETDB1 implements its effects via regulation of thrombospondin 1, and the SET-domain of SETDB1 is essential for the maintenance of its tumorigenic activity. Inhibition of SETDB1 reduces cell growth in melanomas resistant to targeted treatments. Our results indicate that SETDB1 is a major driver of melanoma development and may serve as a potential future target for the treatment of this disease.


Subject(s)
Carcinogenesis/genetics , Histone-Lysine N-Methyltransferase/genetics , Melanoma/genetics , Melanoma/pathology , Animals , Carcinogenesis/pathology , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Histones/genetics , Humans , Lysine/genetics , Mice , Mice, Inbred NOD , Mice, SCID
16.
Cancers (Basel) ; 10(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453548

ABSTRACT

The mechanisms of adaptive and acquired drug resistance in tumors are not completely understood. So far, gene amplifications or mutations, leading to the reactivation of the MAPK or PI3K pathways have been described. In this study, we used two different methods to generate human melanoblasts: (1) via differentiation from induced pluripotent stem cells (iPSCs) and (2) via dedifferentiation from melanocytes. The melanoblast transcriptomes were then compared to the transcriptome of MAPK inhibitor-resistant melanoma cells. We observed that the expression of genes associated with cell cycle control, DNA damage control, metabolism, and cancer was altered in both melanoblast populations and in both adaptive and acquired resistant melanoma samples, compared to drug-sensitive samples. However, genes involved in antigen presentation and cellular movement were only regulated in the melanoblast populations and in the acquired resistant melanoma samples, compared to the drug-sensitive samples. Moreover, melanocyte-derived melanoblasts and adaptive resistant melanoma samples were characterized by different expression levels of certain transcription factors or genes involved in the CDK5 pathway. In conclusion, we show here that in vitro models of human melanoblasts are very important tools to comprehend the expression profiles of drug-resistant melanoma.

17.
Expert Opin Ther Targets ; 22(12): 983-991, 2018 12.
Article in English | MEDLINE | ID: mdl-30366514

ABSTRACT

INTRODUCTION: SOX2 is a transcription factor that is important in the development and maintenance of the stem cell state. Furthermore, SOX2 is associated with cancer progression because it promotes the migration, invasion, and proliferation of cancer cells. SOX2 is also expressed in cancer stem cells and appears to be involved in the resistance toward anticancer therapies. These features render SOX2 an attractive target for cancer therapy. Areas covered: In this review, we highlight the role of SOX2 in cancer and in the resistance toward anticancer therapies. We summarize recent studies dealing with SOX2 as a direct or indirect therapeutic target in cancer. Expert opinion: SOX2 is an attractive target in cancer therapy because of its role in cancer progression and therapy resistance. SOX2 is a transcription factor, hence direct targeting is difficult. Studies aimed at a functional depletion, for example by knock-down with siRNAs, are difficult to translate into clinical settings. Alternatively, the identification of SOX2 upstream or downstream regulators that are easier to target is of paramount importance.


Subject(s)
Molecular Targeted Therapy , Neoplasms/therapy , SOXB1 Transcription Factors/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Knockdown Techniques , Humans , Neoplasm Invasiveness/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , RNA, Small Interfering/administration & dosage
18.
Int J Cancer ; 143(12): 3131-3142, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29905375

ABSTRACT

Melanoma is often characterized by a constitutively active RAS-RAF-MEK-ERK pathway. For targeted therapy, BRAF inhibitors are available that are powerful in the beginning but resistance occurs rather fast. A better understanding of the mechanisms of resistance is urgently needed to increase the success of the treatment. Here, we observed that SOX2 and CD24 are upregulated upon BRAF inhibitor treatment. A similar upregulation was seen in targeted therapy-resistant, melanoma-derived induced pluripotent cancer cells (iPCCs). SOX2 and CD24 are known to promote an undifferentiated and cancer stem cell-like phenotype associated with resistance. We, therefore, elucidated the role of SOX2 and CD24 in targeted therapy resistance in more detail. We found that the upregulation of SOX2 and CD24 required activation of STAT3 and that SOX2 induced the expression of CD24 by binding to its promoter. We find that the overexpression of SOX2 or CD24 significantly increases the resistance toward BRAF inhibitors, while SOX2 knock-down rendered cells more sensitivity toward treatment. The overexpression of CD24 or SOX2 induced Src and STAT3 activity. Importantly, by either CD24 knock-down or Src/STAT3 inhibition in resistant SOX2-overexpressing cells, the sensitivity toward BRAF inhibitors was re-established. Hence, we suggest a novel mechanism of adaptive resistance whereby BRAF inhibition is circumvented via the activation of STAT3, SOX2 and CD24. Thus, to prevent adaptive resistance, it might be beneficial to combine Src/STAT3 inhibitors together with MAPK pathway inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , CD24 Antigen/metabolism , Melanoma/drug therapy , Molecular Targeted Therapy , SOXB1 Transcription Factors/physiology , Skin Neoplasms/drug therapy , Up-Regulation/physiology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , CD24 Antigen/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , HEK293 Cells , Humans , MAP Kinase Signaling System/drug effects , Melanoma/genetics , Melanoma/metabolism , Neoplastic Stem Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins pp60(c-src)/drug effects , Proto-Oncogene Proteins pp60(c-src)/metabolism , SOXB1 Transcription Factors/genetics , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
19.
Oncotarget ; 8(66): 110166-110175, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29299138

ABSTRACT

Adaptive resistance to targeted therapy such as BRAF inhibitors represents in melanoma a major drawback to this otherwise powerful treatment. Some of the underlying molecular mechanisms have recently been described: hyperactivation of the BRAF-MAPK pathway, of the AKT pathway, of the TGFß/EGFR/PDGFRB pathway, or the low MITF/AXL ratio. Nevertheless, the phenomenon of early resistance is still not clearly understood. In this report, we show that knockdown of neural crest-associated gene ID3 increases the melanoma sensitivity to vemurafenib short-term treatment. In addition, we observe an ID3-mediated regulation of cell migration and of the expression of resistance-associated genes such as SOX10 and MITF. In sum, these data suggest ID3 as a new key actor of melanoma adaptive resistance to vemurafenib and as a potential drug target.

20.
Pigment Cell Melanoma Res ; 29(4): 453-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27105574

ABSTRACT

The sry-related high-mobility box (SOX)-2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF-ß1 stimulation in a time-dependent manner. Moreover, the knockdown of SOX2 impaired TGF-ß-induced invasiveness. This phenotype switch can be explained by SOX2-mediated cross talk between TGF-ß and non-canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF-ß signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF-ß signaling in melanoma, which may have further implications in the clinic.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Melanoma/metabolism , Nevus, Pigmented/metabolism , SOXB1 Transcription Factors/metabolism , Skin Neoplasms/metabolism , Transforming Growth Factor beta1/pharmacology , Cells, Cultured , Disease Progression , Humans , Melanoma/drug therapy , Melanoma/pathology , Nevus, Pigmented/drug therapy , Nevus, Pigmented/pathology , SOXC Transcription Factors/metabolism , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...