Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Europace ; 26(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38193546

ABSTRACT

AIMS: Ongoing clinical trials investigate the therapeutic value of stereotactic cardiac radioablation (cRA) in heart failure patients with ventricular tachycardia. Animal data indicate an effect on local cardiac conduction properties. However, the exact mechanism of cRA in patients remains elusive. Aim of the current study was to investigate in vivo and in vitro myocardial properties in heart failure and ventricular tachycardia upon cRA. METHODS AND RESULTS: High-density 3D electroanatomic mapping in sinus rhythm was performed in a patient with a left ventricular assist device and repeated ventricular tachycardia episodes upon several catheter-based endocardial radio-frequency ablation attempts. Subsequent to electroanatomic mapping and cRA of the left ventricular septum, two additional high-density electroanatomic maps were obtained at 2- and 4-month post-cRA. Myocardial tissue samples were collected from the left ventricular septum during 4-month post-cRA from the irradiated and borderzone regions. In addition, we performed molecular biology and mitochondrial density measurements of tissue and isolated cardiomyocytes. Local voltage was altered in the irradiated region of the left ventricular septum during follow-up. No change of local voltage was observed in the control (i.e. borderzone) region upon irradiation. Interestingly, local activation time was significantly shortened upon irradiation (2-month post-cRA), a process that was reversible (4-month post-cRA). Molecular biology unveiled an increased expression of voltage-dependent sodium channels in the irradiated region as compared with the borderzone, while Connexin43 and transforming growth factor beta were unchanged (4-month post-cRA). Moreover, mitochondrial density was decreased in the irradiated region as compared with the borderzone. CONCLUSION: Our study supports the notion of transiently altered cardiac conduction potentially related to structural and functional cellular changes as an underlying mechanism of cRA in patients with ventricular tachycardia.


Subject(s)
Catheter Ablation , Heart Failure , Tachycardia, Ventricular , Humans , Myocytes, Cardiac , Electrophysiologic Techniques, Cardiac/methods , Heart Ventricles , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/etiology , Arrhythmias, Cardiac , Catheter Ablation/methods
2.
Sci Transl Med ; 13(622): eabe8952, 2021 12.
Article in English | MEDLINE | ID: mdl-34851694

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is prevalent and deadly, but so far, there is no targeted therapy. A main contributor to the disease is impaired ventricular filling, which we improved with antisense oligonucleotides (ASOs) targeting the cardiac splice factor RBM20. In adult mice with increased wall stiffness, weekly application of ASOs over 2 months increased expression of compliant titin isoforms and improved cardiac function as determined by echocardiography and conductance catheter. RNA sequencing confirmed RBM20-dependent isoform changes and served as a sensitive indicator of potential side effects, largely limited to genes related to the immune response. We validated our approach in human engineered heart tissue, showing down-regulation of RBM20 to less than 50% within 3 weeks of treatment with ASOs, resulting in adapted relaxation kinetics in the absence of cardiac pathology. Our data suggest anti-RBM20 ASOs as powerful cardiac splicing regulators for the causal treatment of human HFpEF.


Subject(s)
Heart Failure , Animals , Diastole , Heart , Heart Ventricles , Humans , Mice , RNA-Binding Proteins/metabolism , Stroke Volume
3.
Nat Commun ; 11(1): 3133, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561764

ABSTRACT

Proximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin's Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Escherichia coli Proteins/genetics , Protein Kinases/metabolism , Proteome/metabolism , Proteomics/methods , Repressor Proteins/genetics , Sarcomeres/metabolism , Animals , Animals, Newborn , Biotinylation/genetics , Female , Gene Knock-In Techniques , Male , Metabolic Networks and Pathways , Mice, Transgenic , Models, Animal , Myocardium/cytology , Myocardium/metabolism , Proof of Concept Study , Protein Interaction Maps/physiology , Protein Kinases/genetics , Proteostasis/physiology , Quadriceps Muscle/cytology , Quadriceps Muscle/metabolism , Sarcomeres/genetics , Signal Transduction/physiology , Structure-Activity Relationship
4.
Proc Natl Acad Sci U S A ; 116(50): 25126-25136, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31757849

ABSTRACT

Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.


Subject(s)
Myocytes, Cardiac/metabolism , Protein Kinases , Proteostasis/physiology , Animals , Mice , Mice, Transgenic , Microscopy , Protein Kinases/genetics , Protein Kinases/metabolism , Sarcomeres/metabolism , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...