Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32907974

ABSTRACT

The mumps virus (MuV) fusion protein (F) plays a crucial role for the entry process and spread of infection by mediating fusion between viral and cellular membranes as well as between infected and neighboring cells, respectively. The fusogenicity of MuV differs depending on the strain and might correlate with the virulence; however, it is unclear which mechanisms contribute to the differentiated fusogenicity. The cleavage motif of MuV F is highly conserved among all strains, except the amino acid residue at position 8 (P8) that shows a certain variability with a total of four amino acid variants (leucine [L], proline [P], serine [S], and threonine [T]). We demonstrate that P8 affects the proteolytic processing and the fusogenicity of MuV F. The presence of L or S at P8 resulted in a slower proteolysis of MuV F by furin and a reduced ability to mediate cell-cell fusion. However, virus-cell fusion was more efficient for F proteins harboring L or S at P8, suggesting that P8 contributes to the mechanism of viral spread: P and T enable a rapid spread of infection by cell-to-cell fusion, whereas viruses harboring L or S at P8 spread preferentially by the release of infectious viral particles. Our study provides novel insights into the fusogenicity of MuV and its influence on the mechanisms of virus spread within infected tissues. Assuming a correlation between MuV fusogenicity and virulence, sequence information on the amino acid residue at P8 might be helpful to estimate the virulence of circulating and emerging strains.IMPORTANCE Mumps virus (MuV) is the causative agent of the highly infectious disease mumps. Mumps is mainly associated with mild symptoms, but severe complications such as encephalitis, meningitis, or orchitis can also occur. There is evidence that the virulence of different MuV strains and variants might correlate with the ability of the fusion protein (F) to mediate cell-to-cell fusion. However, the relation between virulence and fusogenicity or the mechanisms responsible for the varied fusogenicity of different MuV strains are incompletely understood. Here, we focused on the amino acid residue at position 8 (P8) of the proteolytic cleavage site of MuV F, because this amino acid residue shows a striking variability depending on the genotype of MuV. The P8 residue has a significant effect on the proteolytic processing and fusogenicity of MuV F and might thereby determine the route of viral spread within infected tissues.


Subject(s)
Amino Acids/chemistry , Mumps virus/metabolism , Proteolysis , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Animals , Cell Fusion , Chlorocebus aethiops , Furin/metabolism , Genotype , HEK293 Cells , Humans , Kinetics , Mumps/virology , Mumps virus/genetics , Sequence Homology, Amino Acid , Vero Cells , Viral Fusion Proteins/genetics , Virus Internalization
2.
Cell Rep ; 25(2): 312-320.e7, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30304672

ABSTRACT

Bats harbor a plethora of viruses with an unknown zoonotic potential. In-depth functional characterization of such viruses is often hampered by a lack of virus isolates. The genome of a virus closely related to human mumps viruses (hMuV) was detected in African fruit bats, batMuV. Efforts to characterize batMuV were based on directed expression of the batMuV glycoproteins or use of recombinant chimeric hMuVs harboring batMuV glycoprotein. Although these studies provided initial insights into the functionality of batMuV glycoproteins, the host range, replication competence, immunomodulatory functions, virulence, and zoonotic potential of batMuV remained elusive. Here, we report the successful rescue of recombinant batMuV. BatMuV infects human cells, is largely resistant to the host interferon response, blocks interferon induction and TNF-α activation, and is neurotoxic in rats. Anti-hMuV antibodies efficiently neutralize batMuV. The striking similarities between hMuV and batMuV point at the putative zoonotic potential of batMuV.


Subject(s)
Chiroptera/virology , Immune Evasion/immunology , Mumps virus/immunology , Mumps/virology , Neurotoxicity Syndromes/etiology , Virus Internalization , Virus Replication , Animals , Female , Humans , Mumps virus/pathogenicity , Neurotoxicity Syndromes/pathology , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...