Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Res ; 228: 94-108, 2021 02.
Article in English | MEDLINE | ID: mdl-32835907

ABSTRACT

Peripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6). One or more of these cytokines were expressed in nineteen patients and 2 controls and coordinated expression of GM-CSF, IL-17A, IFN-ϒ, and TNF-α, a signature of activated, MHC Class II dependent autoreactive Th-cells, was unique to 11 patients. GM-CSF is the central driver of tissue-damaging myeloid macrophages. Patients with this cytokine signature had a shorter (P= 0.017) Claudication Onset Distance (17 m) compared with patients lacking the signature (102 m). Transforming Growth Factor ß1 (TGFß1) and Chemokine Ligand 5 (CCL5) were expressed coordinately in all PAD and control muscles, independently of GM-CSF, IL-17A, IFN-ϒ, TNF-α, or IL-6. TGFß1 and CCL5 and their gene transcripts were increased in PAD muscle, consistent with increased age-associated inflammation in these patients. Serum cytokines were not informative of muscle cytokine expression. We have identified a cytokine profile of autoimmune inflammation in calf muscles of a significant proportion of claudicating PAD patients, in association with decreased limb function, and a second independent profile consistent with increased "inflammaging" in all PAD patients.


Subject(s)
Cytokines/metabolism , Inflammation/metabolism , Intermittent Claudication/metabolism , Muscle, Skeletal/metabolism , Peripheral Arterial Disease/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Female , Humans , Male , Middle Aged
2.
Ann Vasc Surg ; 55: 112-121, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30114505

ABSTRACT

BACKGROUND: Claudication is the most common manifestation of peripheral artery disease (PAD), producing significant ambulatory compromise. Limited information exists on the routine physical activity of claudicating patients. Our objective was to record the intensity/time profiles of physical activity and the timing and duration of sedentary behavior of a sample of community-dwelling claudicating patients. METHODS: Forty-four claudicating patients referred to our vascular clinic were recruited. Physical activity was recorded using the ActiGraph GT1M activity monitor. The Actigraph monitor is a lightweight instrument designed to measure human movement through changes in acceleration, measured as counts over 1-minute time periods. Data from 7 consecutive days were used for the calculations. We processed the data using the ActiLife software program. RESULTS: The average daily activity of the claudicating patients shows a steady increase beginning approximately 05:30 AM until a peak plateau from approximately 10:00 AM to 01:30 PM followed by a steady decrease until approximately 09:30 PM, when a sustained period of inactivity begins. The average claudicating patient takes 3586 steps per day at an average intensity of 1.77 metabolic equivalents of task (METs, a physiological measure expressing the energy cost of physical activities). Average physical activity intensity and peak intensity fluctuate very little during the day, and they rarely exceed the level of light activity (light = <3 METs maximum effort, such as casual walking or light housework). During awake time, approximately 7 hours are spent in sedentary behaviors (<1.5 METs), and sedentary time is spread throughout the day mostly in short intervals between periods of low-energy activity. CONCLUSIONS: Our study objectively demonstrates the reduced physical activity of claudicating patients and documents physical activity/duration profiles throughout the day. The intensity of the physical activity of the average claudicating patient fluctuates very little during the day and rarely exceeds a light intensity level. Claudicating patients spend approximately half of their awake time in sedentary behavior and when they walk they do it in short bursts followed by several minutes of rest. We anticipate that changes in routine physical activity/duration profiles of patients with PAD will provide relevant, sensitive, and direct measures of the effectiveness of therapeutic interventions.


Subject(s)
Activity Cycles , Exercise , Health Behavior , Intermittent Claudication/physiopathology , Intermittent Claudication/psychology , Peripheral Arterial Disease/physiopathology , Peripheral Arterial Disease/psychology , Sedentary Behavior , Actigraphy/instrumentation , Aged , Female , Fitness Trackers , Humans , Intermittent Claudication/diagnosis , Male , Middle Aged , Peripheral Arterial Disease/diagnosis , Time Factors
3.
J Transl Med ; 14: 39, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26847457

ABSTRACT

BACKGROUND: Lower leg ischemia, myopathy, and limb dysfunction are distinguishing features of peripheral artery disease (PAD). The myopathy of PAD is characterized by myofiber degeneration in association with extracellular matrix expansion, and increased expression of transforming growth factor-beta 1 (TGF-ß1; a pro-fibrotic cytokine). In this study, we evaluated cellular expression of TGF-ß1 in gastrocnemius of control (CTRL) and PAD patients and its relationship to deposited collagen, fibroblast accumulation and limb hemodynamics. METHODS: Gastrocnemius biopsies were collected from PAD patients with claudication (PAD-II; N = 25) and tissue loss (PAD-IV; N = 20) and from CTRL patients (N = 20). TGF-ß1 in slide-mounted specimens was labeled with fluorescent antibodies and analyzed by quantitative wide-field, fluorescence microscopy. We evaluated co-localization of TGF-ß1 with vascular smooth muscle cells (SMC) (high molecular weight caldesmon), fibroblasts (TE-7 antigen), macrophages (CD163), T cells (CD3) and endothelial cells (CD31). Collagen was stained with Masson Trichrome and collagen density was determined by quantitative bright-field microscopy with multi-spectral imaging. RESULTS: Collagen density increased from CTRL to PAD-II to PAD-IV specimens (all differences p < 0.05) and was prominent around microvessels. TGF-ß1 expression increased with advancing disease (all differences p < 0.05), correlated with collagen density across all specimens (r = 0.864; p < 0.001), associated with fibroblast accumulation, and was observed exclusively in SMC. TGF-ß1 expression inversely correlated with ankle-brachial index across PAD patients (r = -0.698; p < 0.001). CONCLUSIONS: Our findings support a progressive fibrosis in the gastrocnemius of PAD patients that is caused by elevated TGF-ß1 production in the SMC of microvessels in response to tissue hypoxia.


Subject(s)
Muscle, Skeletal/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Peripheral Arterial Disease/pathology , Transforming Growth Factor beta1/metabolism , Case-Control Studies , Collagen/metabolism , Demography , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Male , Microvessels/metabolism , Microvessels/pathology , Middle Aged
4.
J Surg Res ; 196(1): 172-9, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25791828

ABSTRACT

BACKGROUND: Peripheral artery disease (PAD), which affects an estimated 27 million people in Europe and North America, is caused by atherosclerotic plaques that limit blood flow to the legs. Chronic, repeated ischemia in the lower leg muscles of PAD patients is associated with loss of normal myofiber morphology and myofiber degradation. In this study, we tested the hypothesis that myofiber morphometrics of PAD calf muscle are significantly different from normal calf muscle and correlate with reduced calf muscle strength and walking performance. METHODS: Gastrocnemius biopsies were collected from 154 PAD patients (Fontaine stage II) and 85 control subjects. Morphometric parameters of gastrocnemius fibers were determined and evaluated for associations with walking distances and calf muscle strength. RESULTS: Compared with control myofibers, PAD myofiber cross-sectional area, major and minor axes, equivalent diameter, perimeter, solidity, and density were significantly decreased (P < 0.005), whereas roundness was significantly increased (P < 0.005). Myofiber morphometric parameters correlated with walking distances and calf muscle strength. Multiple regression analyses demonstrated myofiber cross-sectional area, roundness, and solidity as the best predictors of calf muscle strength and 6-min walking distance, whereas cross-sectional area was the main predictor of maximum walking distance. CONCLUSIONS: Myofiber morphometrics of PAD gastrocnemius differ significantly from those of control muscle and predict calf muscle strength and walking distances of the PAD patients. Morphometric parameters of gastrocnemius myofibers may serve as objective criteria for diagnosis, staging, and treatment of PAD.


Subject(s)
Extremities/physiopathology , Intermittent Claudication/pathology , Muscle Fibers, Skeletal/pathology , Aged , Female , Humans , Intermittent Claudication/physiopathology , Male , Middle Aged , Muscle Strength
5.
J Histochem Cytochem ; 63(4): 256-69, 2015 04.
Article in English | MEDLINE | ID: mdl-25575565

ABSTRACT

Patients with peripheral artery disease (PAD) develop a myopathy in their ischemic lower extremities, which is characterized by myofiber degeneration, mitochondrial dysfunction and impaired limb function. Desmin, a protein of the cytoskeleton, is central to maintenance of the structure, shape and function of the myofiber and its organelles, especially the mitochondria, and to translation of sarcomere contraction into muscle contraction. In this study, we investigated the hypothesis that disruption of the desmin network occurs in gastrocnemius myofibers of PAD patients and correlates with altered myofiber morphology, mitochondrial dysfunction, and impaired limb function. Using fluorescence microscopy, we evaluated desmin organization and quantified myofiber content in the gastrocnemius of PAD and control patients. Desmin was highly disorganized in PAD but not control muscles and myofiber content was increased significantly in PAD compared to control muscles. By qPCR, we found that desmin gene transcripts were increased in the gastrocnemius of PAD patients as compared with control patients. Increased desmin and desmin gene transcripts in PAD muscles correlated with altered myofiber morphology, decreased mitochondrial respiration, reduced calf muscle strength and decreased walking performance. In conclusion, our studies identified disruption of the desmin system in gastrocnemius myofibers as an index of the myopathy and limitation of muscle function in patients with PAD.


Subject(s)
Desmin/metabolism , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Peripheral Arterial Disease/metabolism , Aged , Case-Control Studies , Cell Count , Humans , Lower Extremity , Middle Aged , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Peripheral Arterial Disease/pathology , Peripheral Arterial Disease/physiopathology , Walking
6.
Redox Biol ; 2: 921-8, 2014.
Article in English | MEDLINE | ID: mdl-25180168

ABSTRACT

BACKGROUND: Peripheral artery disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in the arteries supplying the legs, affects approximately 5% of Americans. We have previously, demonstrated that a myopathy characterized by myofiber oxidative damage and degeneration is central to PAD pathophysiology. OBJECTIVES: In this study, we hypothesized that increased oxidative damage in the myofibers of the gastrocnemius of PAD patients is myofiber-type selective and correlates with reduced myofiber size. METHODS: Needle biopsies were taken from the gastrocnemius of 53 PAD patients (28 with early PAD and 25 with advanced PAD) and 25 controls. Carbonyl groups (marker of oxidative damage), were quantified in myofibers of slide-mounted tissue, by quantitative fluorescence microscopy. Myofiber cross-sectional area was determined from sarcolemma labeled with wheat germ agglutinin. The tissues were also labeled for myosin I and II, permitting quantification of oxidative damage to and relative frequency of the different myofiber Types (Type I, Type II and mixed Type I/II myofibers). We compared PAD patients in early (N=28) vs. advanced (N=25) disease stage for selective, myofiber oxidative damage and altered morphometrics. RESULTS: The carbonyl content of gastrocnemius myofibers was higher in PAD patients compared to control subjects, for all three myofiber types (p<0.05). In PAD patients carbonyl content was higher (p<0.05) in Type II and I/II fibers compared to Type I fibers. Furthermore, the relative frequency and cross-sectional area of Type II fibers were lower, while the relative frequencies and cross-sectional area of Type I and Type I/II fibers were higher, in PAD compared to control gastrocnemius (p<0.05). Lastly, the type II-selective oxidative damage increased and myofiber size decreased as the disease progressed from the early to advanced stage. CONCLUSIONS: Our data confirm increased myofiber oxidative damage and reduced myofiber size in PAD gastrocnemius and demonstrate that the damage is selective for type II myofibers and is worse in the most advanced stage of PAD.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Oxidative Stress , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/pathology , Aged , Female , Humans , Male , Middle Aged
7.
J Neurochem ; 114(5): 1261-76, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20524958

ABSTRACT

Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed.


Subject(s)
Adaptive Immunity , Homeostasis/immunology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/prevention & control , Neuroglia/immunology , Animals , Humans , Neurodegenerative Diseases/pathology , Neuroglia/cytology , Neuroglia/pathology
8.
J Cereb Blood Flow Metab ; 29(1): 39-43, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18728681

ABSTRACT

Neuregulin-1 (NRG1) signaling has multiple functions in neurons and glia. The data in this study show that NRG1 may also possess significant signaling and cytoprotective properties in human brain microvascular endothelial cells (BMECs). Neuregulin-1 mRNA and protein expression are present in these cells, and NRG1 receptors erbB2 and erbB3 are phosphorylated in response to NRG1. Neuregulin-1 triggers clear biologic responses in BMECs--elevated phospho-Akt levels, increased ring formation in a Matrigel assay, and decreased cell death after oxidative injury with H(2)O(2). These data suggest that NRG1 signaling is functional and cytoprotective in BMECs.


Subject(s)
Brain/metabolism , Endothelial Cells/metabolism , Neuregulin-1/metabolism , Signal Transduction , Brain/blood supply , Cells, Cultured , Cytoprotection , Humans , Microvessels/metabolism , Neovascularization, Physiologic
9.
Neurobiol Aging ; 28(12): 1936-40, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17030475

ABSTRACT

Despite numerous studies showing neurotrophic and neuroprotective effects of estrogen in animal models, the long-term effects of estrogen use on brain morphology in older women are not known. Thus, we compared ventricular, cerebrospinal fluid, white matter, and grey matter volumes estimated from magnetic resonance images of postmenopausal women with more than 20 years exposure to unopposed estrogen, women who were not on estrogen, and young healthy women. Estrogen users had significantly smaller ventricles and greater white matter volumes than non-users, but hormone exposure did not affect grey matter volumes. Young healthy women had significantly smaller ventricles, less cerebrospinal fluid and more grey matter than both groups of older women. However, they had comparable white matter volumes to older women on estrogen. These findings suggest that long-term estrogen protects against white matter loss in aging. This adds to findings from other studies suggesting estrogen is neuroprotective of the hippocampus and other regions in older women.


Subject(s)
Aging/drug effects , Aging/pathology , Brain/drug effects , Brain/pathology , Estrogens/administration & dosage , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/pathology , Aged , Female , Humans , Longitudinal Studies , Pilot Projects , Postmenopause
SELECTION OF CITATIONS
SEARCH DETAIL
...