Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 1): 118836, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38565415

ABSTRACT

Marine algae-based drug discovery has recently received a lot of attention. This study was conducted to extract laminarin-enriched solvent extracts from Padina tetrastromatica and Sargassum cinereum and to evaluate their anticancer activity against the HeLa cell line in vitro (MTT assay). Furthermore, their toxicity was determined through a zebra fish model study. P. tetrastromatica and S. cinereum biomasses have a higher concentration of essential biomolecules such as carbohydrates, protein, and crude fiber, as well as essential minerals (Na, Mg, K, Ca, and Fe) and secondary metabolites. Methanol extracts, in particular, contain a higher concentration of vital phytochemicals than other solvent extracts. The laminarin quantification assay states that methanol extracts of P. tetrastromatica and S. cinereum are rich in laminarin, which is primarily confirmed by FTIR analysis. In an anticancer study, laminarin-MeE from P. tetrastromatica and S. cinereum at concentrations of 750 and 1000 µg mL-1 demonstrated 100% activity against HeLa cells. The Zebra fish model-based toxicity study revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum is non-toxic. These findings revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum has significant anticancer activity without causing toxicity.

2.
Environ Res ; 251(Pt 2): 118729, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492832

ABSTRACT

The study was carried out to evaluate the effectiveness of the Aristolochia bracteolata water flower extract-mediated AgNPs synthesis and assess their antimicrobial potential. According to the experimental and analytical results, A. bracteolata flower extract can produce valuable AgNPs. The characteristic features of these AgNPs were assessed with UV-visible spectrophotometer, Fourier transform-infrared spectroscopy, Transmission Electron Microscope, Scanning Electron Microscopy, as well as. Under UV-vis. spectrum results, showed major peak at 430 nm and recorded essential functional groups responsible for reducing, capping, and stabilizing AgNPs by FT-IR analysis. In addition, the size and shape of the synthesized AgNPs were found as 21.11-25.17 nm and spherical/octahedral shape. The A. bracteolata fabricated NPs showed remarkable antimicrobial activity against fish bacterial pathogens (V. parahaemolytics, Serratia sp., B. subtilis, and E. coli) as well as common fungal pathogens (A. niger, C. albicans, A. flavus, and A. terreus) at the quantity of 100 µg mL-1 than positive controls. Nevertheless, it was not effective against human bacterial pathogens. It concludes that AgNPs synthesized from A. bracteolata aqueous flower extract have excellent antimicrobial activity and may have a variety of biomedical applications.

3.
Environ Res ; 251(Pt 2): 118702, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503381

ABSTRACT

The anti-inflammatory, anti-diabetic, and biocompatibility nature of Tamarindus indica L. fruit coat aqueous extract were investigated in this research through in-vitro and in-vivo studies. The anti-inflammatory property was determined through albumin denaturation inhibition and antiprotease activities as up to 39.5% and 41.2% respectively at 30 mg mL-1 concentration. Furthermore, the antidiabetic activity was determined through α-amylase and α-glucosidase inhibition as up to 62.15% and 67.35% respectively at 30 mg mL-1 dosage. The albino mice based acute toxicity study was performed by different treatment groups (group I-V) with different dosages of aqueous extract to detect the biocompatibility of sample. Surprisingly, findings revealed that the T. indica L. fruit coat aqueous extract had no harmful impacts on any of the groups. Urine, as well as serum parameter analysis, confirmed this. Moreover, the findings of SOD (Superoxide Dismutase), GST (Glutathione-S-transferase), & CAT (Catalase) as well as glutathione peroxidase as well as reduced glutathione antioxidant enzymes studies stated that the aqueous extract possess high antioxidant ability via a dose-dependent way. These findings indicate that T. indica fruit coat aqueous extract contains medicinally important phytochemicals with anti-inflammatory and anti-diabetic properties, as well as being biocompatible in nature.

4.
Environ Res ; 243: 117802, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38043891

ABSTRACT

This investigation was designed and performed to compare the phytochemical profiling, activities of antibacterial, thrombolytic, anti-inflammatory, and cytotoxicity of methanol extract (ME-E) and aqueous extract (AQ-E) of aerial parts of Achyranthes aspera through in-vitro approach. Also characterize the functional groups of bioactive compounds in the ME-E through Fourier-transform infrared (FTIR) spectroscopy analysis. Interestingly, qualitative phytochemical screening proved that the ME-E contain more number of vital phytochemicals such as phenolics. saponins, tannins, alkaloids, flavonoids, cardiac glycosides, steroids, and phlobatannins than AQ-E. Similarly, the ME-E showed notable antibacterial activity as dose dependent manner against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa at 1000 µg mL-1 concentration. ME-E also showed 75.2 ± 2% of clot lysis (thrombolytic activity) at 1000 µg mL-1 dosage and it followed by AQ-E 51.24 ± 3%. The ME-E showed moderate and AQ-E demonstrate poor anti-inflammatory activity evidenced by albumin denaturation inhibition and anti-lipoxygenase assays. Furthermore, the ME-E demonstrated a dose dependent cytotoxicity was noted against brine shrimp larvae. In support of this ME-E considerable activities, the Fourier transform infrared (FTIR) analysis confirmed that this extract contain more number peaks attributed to the stretch of various essential functional groups belongs to different bioactive compounds. Hence this ME-E of A. aspera can be considered for further in depth scientific investigations to validate their maximum biomedical potential.


Subject(s)
Achyranthes , Plant Extracts , Plant Extracts/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/analysis , Methanol/analysis , Phytochemicals/toxicity , Phytochemicals/analysis , Plant Components, Aerial/chemistry
5.
Environ Res ; 242: 117767, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38029826

ABSTRACT

The anti-dermatophytic (Proteus vulgaris, Klebsiella pneumoniae, Enterobacter aerogenes, Propionibacterium acnes, Staphylococcus aureus, and Streptococcus pyogenes) and nephroprotective activities of methanol and aqueous extracts obtained from Lannea coromandelica fruit were investigated through in-vitro (agar well diffusion method) and in-vivo (animal model) study. The methanol extract showed considerable antibacterial activity against selective bacterial pathogens at increased concentration (15.0 mg mL-1) in the following order P. vulgaris (35.2 ± 1.6 mm) > E. aerogenes (32.1 ± 2.1 mm) > K. pneumoniae (29.3±2 mm) > P. acnes (28.2 ± 2.4 mm) > S. aureus (25.5 ± 2.4 mm) > S. pyogenes (24.3 ± 2.1 mm) than aqueous extract. The MIC values of this methanol and aqueous extract was found as 2.5-7.5 mg mL-1 and 5.0 to 1.0 mg mL-1 respectively. Different treatment sets (A-E) on a rat-based animal model study revealed that the methanol extract has excellent antioxidant and nephroprotective activity, as well as favorable effects on essential biochemical substances involved in active metabolic activities. As demonstrated by histopathological and microscopic examination, the biologically active chemical present in methanol extract had a positive effect on serum markers, enzyme, and non-enzyme-based antioxidant activities, as well as lowering the toxicity caused by EG in the rat (as nephroprotective activity) renal cells.


Subject(s)
Anacardiaceae , Antioxidants , Rats , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Methanol/pharmacology , Fruit , Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Water
6.
Environ Res ; 245: 118044, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157963

ABSTRACT

The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.


Subject(s)
Antioxidants , Millettia , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Millettia/chemistry , Spectroscopy, Fourier Transform Infrared , Acetone , Staphylococcus aureus , Chromatography, High Pressure Liquid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
7.
Chemosphere ; 345: 140487, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875217

ABSTRACT

A sol-gel method was used to synthesize the cerium dioxide nanoparticles. The nanoparticles formed were then characterized with UV-visible spectrophotometry, Fourier Transform Infrared Spectrophotometer (FTIR), SEM-EDAX, XRD, and Dynamic Light Scattering (DLS). The UV-visible absorbance at 282 nm and characteristic peak at 600-4000 cm-1 provided insight into the formation of cerium dioxide nanoparticles using a chemical method. SEM analysis and EDAX analysis confirmed nanoparticle formation and elements within the nanoparticles based on their irregular morphology. The hydrodynamic size obtained from the DLS analysis was 178.4 nm and the polydispersity was 0.275 nm. Furthermore, XRD results confirmed the crystalline nature of cerium dioxide nanoparticles. Using batch adsorption as a method, the effect of concentration of Polycyclic Aromatic Hydrocarbons (PAH), adsorbent concentration, pH, and irradiation source was investigated. Under UV light conditions, 10 µg/mL cerium dioxide nanoparticle at pH 5 degraded 2 µg/mL of PAH (anthracene and fluorene). Consequently, the synthesized cerium dioxide nanoparticles were effective photocatalysts. For anthracene and fluorene, kinetic studies showed the degradation process followed pseudo-second-order kinetics and Freundlich isotherms. Cerium oxide also exhibited significant antimicrobial and antibiofilm activity against bacteria and fungi. As a result, the cerium dioxide nanoparticle has proved to be a highly effective photocatalytic tool for the degradation of PAHs and exhibits strong antimicrobial activity.


Subject(s)
Anti-Infective Agents , Cerium , Nanoparticles , Polycyclic Aromatic Hydrocarbons , Kinetics , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Anti-Infective Agents/chemistry , Cerium/pharmacology , Cerium/chemistry , Bacteria , Fluorenes , Polycyclic Aromatic Hydrocarbons/pharmacology , Anthracenes , Fungi , Biofilms
8.
Biomed Hub ; 6(3): 122-137, 2021.
Article in English | MEDLINE | ID: mdl-34934765

ABSTRACT

Negative impacts of COVID-19 on human health and economic and social activities urge scientists to develop effective treatments. Baicalin is a natural flavonoid, extracted from a traditional medicinal plant, previously reported with anti-inflammatory activity. In this study, we used pharmacophore fitting and molecular docking to screen and determine docking patterns and the binding affinity of baicalin on 3 major targets of SARS-CoV-2 (3-chymotrypsin-like cysteine protease [3CLpro], papain-like protease [PLpro], and RNA-dependent RNA polymerase). The obtained data revealed that baicalin has high pharmacophore fitting on 3CLpro and predicted good binding affinity on PLpro. Moreover, using the enzymatic assay, we examined the inhibitory effect of baicalin in vitro on the screened enzymes. Baicalin also exhibits inhibitory effect on these proteases in vitro. Additionally, we performed pharmacophore-based screening of baicalin on human targets and conducted pathway analysis to explore the potential cytoprotective effects of baicalin in the host cell that may be beneficial for COVID-19 treatment. The result suggested that baicalin has multiple targets in human cell that may induce multiple pharmacological effects. The result of pathway analysis implied that these targets may be associated with baicalin-induced bioactivities that are involved with signals of pro-inflammation factors, such as cytokine and chemokine. Taken together with supportive data from the literature, the bioactivities of bailalin may be beneficial for COVID-19 treatment by reducing cytokine-induced acute inflammation. In conclusion, baicalin is potentially a good candidate for developing new therapeutic to treat COVID-19.

9.
Anticancer Res ; 41(5): 2333-2347, 2021 May.
Article in English | MEDLINE | ID: mdl-33952458

ABSTRACT

BACKGROUND/AIM: Glioblastoma multiforme (GBM) is a lethal disease with a high rate of chemoresistance to temozolomide (TMZ). The aim of the study was to establish a TMZ-resistant subline from the GBM-8401 cell line to determine the mechanisms of resistance and identify novel effective therapeutics for TMZ-resistant GBM. MATERIALS AND METHODS: Comparative transcriptome analysis of GBM-8401/TMZR cells and the parental line was performed using Ion Torrent sequencing. Differentially expressed genes (DEGs) between the GBM-8401/TMZR and GBM-8401 cell lines were analyzed. RESULTS: Transcriptomic profiling of GBM-8401/TMZR cells revealed DEGs involved in the retinoblastoma (RB) signaling, DNA damage response (DDR) pathway, and DNA repair mechanisms. CONCLUSION: In vitro and in vivo cell-based GBM models should be used in further biomedical studies to investigate the underlying mechanisms of TMZ-resistant GBM.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , DNA Damage , DNA Repair/genetics , Dose-Response Relationship, Drug , Glioblastoma/pathology , Humans , Models, Genetic , Retinoblastoma Protein/genetics , Signal Transduction/genetics
10.
Oncol Rep ; 45(2): 680-692, 2021 02.
Article in English | MEDLINE | ID: mdl-33416156

ABSTRACT

Novel quinazolinone compounds have been studied in the field of drug discovery for a long time. Among their broad range of pharmacological effects, certain compounds effectively inhibit cancer cell proliferation. MJ­33 is a quinazolinone derivative with proposed anticancer activities that was synthesized in our laboratory. The present study aimed to evaluate the anticancer activity of MJ­33 in fluorouracil (5FU)­resistant colorectal cancer cells (HT­29/5FUR) and to investigate the underlying molecular mechanisms. The cell viability assay results indicated that HT­29/5FUR cell viability was inhibited by MJ­33 treatment in a concentration­dependent manner compared with the control group. The cellular morphological alterations observed following MJ­33 treatment indicated the occurrence of apoptosis and autophagy, as well as inhibition of cell proliferation in a time­dependent manner compared with the control group. The acridine orange, LysoTracker Red and LC3­green fluorescent protein staining results indicated that MJ­33 treatment significantly induced autophagy compared with the control group. The DAPI/TUNEL dual staining results demonstrated increased nuclear fragmentation and condensation following MJ­33 treatment compared with the control group. The Annexin V apoptosis assay and image cytometry analysis results demonstrated a significant increase in apoptotic cells following MJ­33 treatment compared with the control group. The western blotting results demonstrated markedly decreased Bcl­2, phosphorylated (p)­BAD, pro­caspase­9 and pro­caspase­3 expression levels, and notably increased cytochrome c and apoptotic peptidase activating factor 1 expression levels following MJ­33 treatment compared with the control group. Moreover, the expression levels of autophagy­related proteins, including autophagy related (ATG)­5, ATG­7, ATG­12, ATG­16, p62 and LC3­II, were increased following MJ­33 treatment compared with the control group. Furthermore, MJ­33­treated HT­29/5FUR cells displayed decreased expression levels of p­AKT and p­mTOR compared with control cells. The results suggested that MJ­33­induced apoptosis was mediated by AKT signaling, and subsequently modulated via the mitochondria­dependent signaling pathway. Therefore, the results suggested that suppression of AKT/mTOR activity triggered autophagy in the HT­29/5FUR cell line. In summary, the results indicated that MJ­33 inhibited HT­29/5FUR cell viability, and induced apoptosis and autophagy via the AKT/mTOR signaling pathway. The present study may provide novel insight into the anticancer effects and mechanisms underlying MJ­33 in 5FU­resistant colorectal cancer cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , Glycerophosphates/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , Fluorouracil/therapeutic use , Glycerophosphates/therapeutic use , HT29 Cells , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
11.
Biomedicine (Taipei) ; 11(1): 1-18, 2021.
Article in English | MEDLINE | ID: mdl-35223390

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been spreading worldwide with a mind-boggling speed. According to a statement from World Health Organization (WHO), COVID-19 has infected more than six billions people and caused more than one and half million passing in the world. Based on previous experience with SARS, the Taiwanese government had decided to block viral transmission during its early stages. This review sums up the clinical characteristics, Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) viral infection process, diagnostic methods, preventive strategy, and the executive proportions of COVID-19, as well as the name-based mask distribution system (NBMDS) in Taiwan. We also give a review of the conceivable sub-atomic pharmacologic systems against SARS-CoV-2 specialists and the blend of remdesivir (GS-5734), chloroquine (CQ), and hydroxychloroquine (HCQ). Lastly, we summarized the therapeutic agents against COVID-19 as mentioned by COVID-19 treatment guidelines. In this review, development of novel anti-SARS-CoV-2 viral agents, vaccines for COVID-19 therapy or an effective combination therapy can be expected based on all the information accumulated. Last but not least, we might want to stretch out our best respects to all medical providers in their worldwide battle against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...