Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201627

ABSTRACT

Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.


Subject(s)
Analgesics, Opioid , Arabs , Cytochrome P-450 CYP2D6 , Pain, Postoperative , Receptors, Opioid, mu , Tramadol , Adult , Aged , Female , Humans , Male , Middle Aged , Analgesics, Opioid/therapeutic use , Arabs/genetics , Cytochrome P-450 CYP2D6/genetics , Pain, Postoperative/drug therapy , Pain, Postoperative/genetics , Pharmacogenetics/methods , Polymorphism, Single Nucleotide , Receptors, Opioid, mu/genetics , Tramadol/therapeutic use
2.
Org Biomol Chem ; 22(34): 7017-7023, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39139027

ABSTRACT

Despite the extensive use of N-heteroarenes in pharmaceuticals and natural products, efficient methods for selective alkylation at the C-4 position of 2-pyridone are scarce. We developed an enantioselective Michael addition of 3-hydroxy-2-pyridone to nitroolefins at the C-4 position using cinchona-derived bifunctional squaramide organocatalysts, achieving up to 95% yield and >99% ee. This selectivity is driven by the bifunctional organocatalysts' hydrogen bonding interactions with 3-hydroxy-2-pyridone and nitroolefins under mild conditions. This method demonstrates the Michael reaction's versatility with various nitroolefins, providing a sustainable approach for synthesizing chiral N-heteroarenes with high enantioselectivity and regioselectivity under environmentally friendly conditions.

3.
Sci Rep ; 13(1): 10583, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386052

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a recent pandemic that caused serious global emergency. To identify new and effective therapeutics, we employed a drug repurposing approach. The poly (ADP ribose) polymerase inhibitors were used for this purpose and were repurposed against the main protease (Mpro) target of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The results from these studies were used to design compounds using the 'Grow Scaffold' modules available on Discovery Studio v2018. The three designed compounds, olaparib 1826 and olaparib 1885, and rucaparib 184 demonstrated better CDOCKER docking scores for Mpro than their parent compounds. Moreover, the compounds adhered to Lipinski's rule of five and demonstrated a synthetic accessibility score of 3.55, 3.63, and 4.30 for olaparib 1826, olaparib 1885, and rucaparib 184, respectively. The short-range Coulombic and Lennard-Jones potentials also support the potential binding of the modified compounds to Mpro. Therefore, we propose these three compounds as novel SARS-CoV-2 inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Repositioning , Pandemics
4.
Heliyon ; 9(2): e13324, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816262

ABSTRACT

Tuberculosis (TB) in one of the dreadful diseases present globally. This is caused by Mycobacterium tuberculosis. Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS) is an essential enzyme in biotin biosynthesis and is an ideal target to design and develop novel inhibitors. In order to effectively combat this disease six natural compound (butein) analogues were subjected to molecular docking to determine their binding mode and the binding affinities. The resultant complex structures were subjected to 500 ns simulation run to estimate their binding stabilities using GROMACS. The molecular dynamics simulation studies provided essential evidence that the systems were stable during the progression of 500 ns simulation run. The root mean square deviation (RMSD) of all the systems was found to be below 0.3 nm stating that the systems are well converged. The radius of gyration (Rg) profiles indicated that the systems were highly compact without any major fluctuations. The principle component analysis (PCA) and Gibbs energy landscape studies have revealed that the comp3, comp5 and comp11 systems navigated marginally through the PC2. The intermolecular interactions have further demonstrated that all the compounds have displayed key residue interactions, firmly holding the ligands at the binding pocket. The residue Lys37 was found consistently to interact with all the ligands highlighting its potential role in inhibiting the MtDTBS. Our investigation further put forth two novel compounds (comp10 and comp11) as putative antituberculosis agents. Collectively, we propose six compounds has plausible inhibitors to curtail TB and further can act as scaffolds in designing new compounds.

5.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555761

ABSTRACT

Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , Humans , Maraviroc/pharmacology , HIV/metabolism , Molecular Docking Simulation , Cysteine , HIV Infections/drug therapy , Pharmacophore , Receptors, Chemokine , Molecular Dynamics Simulation , Receptors, CCR5/metabolism , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/chemistry
6.
Front Cell Infect Microbiol ; 12: 909111, 2022.
Article in English | MEDLINE | ID: mdl-35846777

ABSTRACT

Spleen tyrosine kinase (SYK) is an essential mediator of immune cell signaling and has been anticipated as a therapeutic target for autoimmune diseases, notably rheumatoid arthritis, allergic rhinitis, asthma, and cancers. Significant attempts have been undertaken in recent years to develop SYK inhibitors; however, limited success has been achieved due to poor pharmacokinetics and adverse effects of inhibitors. The primary goal of this research was to identify potential inhibitors having high affinity, selectivity based on key molecular interactions, and good drug-like properties than the available inhibitor, fostamatinib. In this study, a 3D-QSAR model was built for SYK based on known inhibitor IC50 values. The best pharmacophore model was then used as a 3D query to screen a drug-like database to retrieve hits with novel chemical scaffolds. The obtained compounds were subjected to binding affinity prediction using the molecular docking approach, and the results were subsequently validated using molecular dynamics (MD) simulations. The simulated compounds were ranked according to binding free energy (ΔG), and the binding affinity was compared with fostamatinib. The binding mode analysis of selected compounds revealed that the hit compounds form hydrogen bond interactions with hinge region residue Ala451, glycine-rich loop residue Lys375, Ser379, and DFG motif Asp512. Identified hits were also observed to form a desirable interaction with Pro455 and Asn457, the rare feature observed in SYK inhibitors. Therefore, we argue that identified hit compounds ZINC98363745, ZINC98365358, ZINC98364133, and ZINC08789982 may help in drug design against SYK.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Spleen , Syk Kinase
7.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408569

ABSTRACT

Considering the potential bioactivities of natural product and natural product-like compounds with highly complex and diverse structures, the screening of collections and small-molecule libraries for high-throughput screening (HTS) and high-content screening (HCS) has emerged as a powerful tool in the development of novel therapeutic agents. Herein, we review the recent advances in divergent synthetic approaches such as complexity-to-diversity (Ctd) and biomimetic strategies for the generation of structurally complex and diverse indole-based natural product and natural product-like small-molecule libraries.


Subject(s)
Biological Products , Indoles , Small Molecule Libraries/chemistry
8.
Pathogens ; 11(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35456060

ABSTRACT

Diarrheal diseases due to foodborne Escherichia coli are the leading cause of illness in humans. Here, we performed pathogenic typing, molecular typing, and antimicrobial susceptibility tests on seventy-five isolates of E. coli isolated from stool samples of patients suffering from foodborne diseases in Busan, South Korea. All the isolates were identified as E. coli by both biochemical analysis (API 20E system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The bacteria displayed entero-pathogenic E. coli (EPEC) (47.0%), entero-aggregative E. coli (EAEC) (33.3%), entero-toxigenic E. coli (ETEC) (6.6%), ETEC and EPEC (6.6%), EPEC and EAEC (4%), and ETEC and EAEC (2.7%) characteristics. The E. coli isolates were highly resistant to nalidixic acid (44.0%), tetracycline (41.3%), ampicillin (40%), ticarcillin (38.7%), and trimethoprim/sulfamethoxazole (34.7%); however, they were highly susceptible to imipenem (98.6%), cefotetan (98.6%), cefepime (94.6%), and chloramphenicol (94.6%). Although 52 strains (69.3%) showed resistance against at least 1 of the 16 antibiotics tested, 23 strains (30.7%) were susceptible to all the antibiotics. Nine different serotypes (O166, O8, O20, O25, O119, O159, O28ac, O127a, and O18), five genotypes (I to V, random-amplified polymorphic DNA), and four phenotypes (A to D, MALDI-TOF MS) were identified, showing the high level of heterogeneity between the E. coli isolates recovered from diarrheal patients in South Korea.

9.
Mar Drugs ; 20(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323470

ABSTRACT

A great effort to discover new therapeutic ingredients is often initiated through the discovery of the existence of novel marine natural products. Since substances produced by the marine environment might be structurally more complex and unique than terrestrial natural products, there have been cases of misassignments of their structures despite the availability of modern spectroscopic and computational chemistry techniques. When it comes to refutation to erroneously or tentatively proposed structures empirical preparations through organic chemical synthesis has the greatest contribution along with close and sophiscated inspection of spectroscopic data. Herein, we analyzed the total synthetic studies that have decisively achieved in revelation of errors, ambiguities, or incompleteness of the isolated structures of marine natural products covering the period from 2018 to 2021.


Subject(s)
Biological Products/chemistry , Chemistry Techniques, Synthetic , Marine Biology , Molecular Structure , Spectrum Analysis
10.
Org Lett ; 24(8): 1647-1651, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35175781

ABSTRACT

The highly enantioselective aza-Michael reaction of tert-butyl ß-naphthylmethoxycarbamate to cyclic enones has been accomplished by using a new cinchona alkaloid derived C(9)-urea ammonium catalyst under phase-transfer catalysis conditions with up to 98% ee at 0 °C. The resulting aza-Michael adducts can be converted to versatile intermediates by selective deprotection and the cyclic 1,3-aminoalcohols by diastereoselective reduction with up to 32:1, which have been widely used as important pharmacophores in pharmaceutical development.

SELECTION OF CITATIONS
SEARCH DETAIL