Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069116

ABSTRACT

The growing prevalence of in vitro fertilization-embryo transfer procedures has resulted in an increased incidence of recurrent implantation failure (RIF), necessitating focused research in this area. STAT3, a key factor in maternal endometrial remodeling and stromal proliferation, is crucial for successful embryo implantation. While the relationship between STAT3 and RIF has been studied, the impact of single nucleotide polymorphisms (SNPs) in miRNAs, well-characterized gene expression modulators, on STAT3 in RIF cases remains uncharacterized. Here, we investigated 161 RIF patients and 268 healthy control subjects in the Korean population, analyzing the statistical association between miRNA genetic variants and RIF risk. We aimed to determine whether SNPs in specific miRNAs, namely miR-218-2 rs11134527 G>A, miR-34a rs2666433 G>A, miR-34a rs6577555 C>A, and miR-130a rs731384 G>A, were significantly associated with RIF risk. We identified a significant association between miR-34a rs6577555 C>A and RIF prevalence (implantation failure [IF] ≥ 2: adjusted odds ratio [AOR] = 2.264, 95% CI = 1.007-5.092, p = 0.048). These findings suggest that miR-34a rs6577555 C>A may contribute to an increased susceptibility to RIF. However, further investigations are necessary to elucidate the precise mechanisms underlying the role of miR-34a rs6577555 C>A in RIF. This study sheds light on the genetic and molecular factors underlying RIF, offering new avenues for research and potential advancements in the diagnosis and treatment of this complex condition.


Subject(s)
MicroRNAs , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Embryo Implantation/genetics , Polymorphism, Single Nucleotide , Signal Transduction/genetics , Republic of Korea/epidemiology , Endometrium/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Genes (Basel) ; 14(8)2023 08 05.
Article in English | MEDLINE | ID: mdl-37628639

ABSTRACT

Recurrent implantation failure (RIF) is defined as a failure to achieve pregnancy after multiple embryo transfers. Implantation is closely related to inflammatory gradients, and interleukin-1beta (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-α) play a key role in maternal and trophoblast inflammation during implantation. Signal transducer and activator of transcription 3 (STAT3) interacts with cytokines and plays a critical role in implantation through involvement in the inflammation of the embryo and placenta. Therefore, we investigated 151 RIF patients and 321 healthy controls in Korea and analyzed the association between the polymorphisms (STAT3 rs1053004, IL-1ß rs16944, IL-6 rs1800796, and TNF-α rs1800629, 1800630) and RIF prevalence. In this paper, we identified that STAT3 rs1053004 (AG, adjusted odds rate [AOR] = 0.623; p = 0.027; GG, AOR = 0.513; p = 0.043; Dominant, AOR = 0.601, p = 0.011), IL-6 rs1800796 (GG, AOR = 2.472; p = 0.032; Recessive, AOR = 2.374, p = 0.037), and TNF-α rs1800629 (GA, AOR = 2.127, p = 0.010, Dominant, AOR = 2.198, p = 0.007) have a significant association with RIF prevalence. This study is the first to investigate the association of each polymorphism with RIF prevalence in Korea and to compare their effect based on their function on inflammation.


Subject(s)
STAT3 Transcription Factor , Tumor Necrosis Factor-alpha , Female , Pregnancy , Humans , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/genetics , STAT3 Transcription Factor/genetics , Interleukin-6/genetics , Inflammation
3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628769

ABSTRACT

Coronary artery disease (CAD) is a prevalent cardiovascular condition characterized by the accumulation of plaque within coronary arteries. While distinct features of CAD have been reported, the association between genetic factors and CAD in terms of biomarkers was insufficient. This study aimed to investigate the connection between genetic factors and CAD, focusing on the thymidylate synthase (TS) gene, a gene involved in DNA synthesis and one-carbon metabolism. TS plays a critical role in maintaining the deoxythymidine monophosphate (dTMP) pool, which is essential for DNA replication and repair. Therefore, our research targeted single nucleotide polymorphisms that could potentially impact TS gene expression and lead to dysfunction. Our findings strongly associate the TS 1100T>C and 1170A>G genotypes with CAD susceptibility. We observed that TS 1100T>C polymorphisms increased disease susceptibility in several groups, while the TS 1170A>G polymorphism displayed a decreasing trend for disease risk when interacting with clinical factors. Furthermore, our results demonstrate the potential contribution of the TS 1100/1170 haplotypes to disease susceptibility, indicating a synergistic interaction with clinical factors in disease occurrence. Based on these findings, we propose that polymorphisms in the TS gene had the possibility of clinically useful biomarkers for the prevention, prognosis, and management of CAD in the Korean population.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Incidence , Disease Susceptibility , Thymidylate Synthase/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...