Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Med ; 30(3): 797-809, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429524

ABSTRACT

Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Gastrointestinal Microbiome/genetics , Neoplasms/drug therapy , Neoplasms/genetics
2.
J Infect ; 88(4): 106131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431153

ABSTRACT

OBJECTIVES: Lymphopenia at hospital admission occurs in over one-third of patients with community-acquired pneumonia (CAP), yet its clinical relevance and pathophysiological implications remain underexplored. We evaluated outcomes and immune features of patients with lymphopenic CAP (L-CAP), a previously described immunophenotype characterized by admission lymphocyte count <0.724 × 109 cells/L. METHODS: Observational study in 149 patients admitted to a general ward for CAP. We measured 34 plasma biomarkers reflective of inflammation, endothelial cell responses, coagulation, and immune checkpoints. We characterized lymphocyte phenotypes in 29 patients using spectral flow cytometry. RESULTS: L-CAP occurred in 45 patients (30.2%) and was associated with prolonged time-to-clinical-stability (median 5 versus 3 days), also when we accounted for competing events for reaching clinical stability and adjusted for baseline covariates (subdistribution hazard ratio 0.63; 95% confidence interval 0.45-0.88). L-CAP patients demonstrated a proportional depletion of CD4 T follicular helper cells, CD4 T effector memory cells, naïve CD8 T cells and IgG+ B cells. Plasma biomarker analyses indicated increased activation of the cytokine network and the vascular endothelium in L-CAP. CONCLUSIONS: L-CAP patients have a protracted clinical recovery course and a more broadly dysregulated host response. These findings highlight the prognostic and pathophysiological relevance of admission lymphopenia in patients with CAP.


Subject(s)
Community-Acquired Infections , Lymphopenia , Pneumonia , Humans , Inflammation , Hospitalization
3.
JCI Insight ; 9(4)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385743

ABSTRACT

The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.


Subject(s)
Monocytes , Pneumonia , Humans , Neutrophils , Lipidomics , Lipopolysaccharides
5.
iScience ; 26(7): 107181, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496676

ABSTRACT

Neutrophils are potent immune cells with key antimicrobial functions. Previous in vitro work has shown that neutrophil effector functions are mainly fueled by intracellular glycolysis. Little is known about the state of neutrophils still in the circulation in patients during infection. Here, we combined flow cytometry, stimulation assays, transcriptomics, and metabolomics to investigate the link between inflammatory and metabolic pathways in blood neutrophils of patients with community-acquired pneumonia. Patients' neutrophils, relative to neutrophils from age- and sex- matched controls, showed increased degranulation upon ex vivo stimulation, and portrayed distinct upregulation of inflammatory transcriptional programs. This neutrophil phenotype was accompanied by a high-energy state with increased intracellular ATP content, and transcriptomic and metabolic upregulation of glycolysis and glycogenolysis. One month after hospital admission, these metabolic and transcriptomic changes were largely normalized. These data elucidate the molecular programs that underpin a balanced, yet primed state of blood neutrophils during pneumonia.

6.
Curr Opin Crit Care ; 29(2): 123-129, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36762681

ABSTRACT

PURPOSE OF REVIEW: This review aims to provide an overview of the current knowledge about microbiota-targeted therapies in sepsis, and calls out - despite recent negative studies - not to halt our efforts of translating these tools into regular medical practice. RECENT FINDINGS: The intestinal microbiome has an important role in shaping our immune system, and microbiota-derived metabolites prime innate and adaptive inflammatory responses to infectious pathogens. Microbiota composition is severely disrupted during sepsis, which has been linked to increased risk of mortality and secondary infections. However, efforts of using these microbes as a tool for prognostic or therapeutic purposes have been unsuccessful so far, and recent trials studying the impact of probiotics in critical illness did not improve patient outcomes. Despite these negative results, researchers must continue their attempts of harnessing the microbiome to improve sepsis survival in patients with a high risk of clinical deterioration. Promising research avenues that could potentially benefit sepsis patients include the development of next-generation probiotics, use of the microbiome as a theranostic tool to direct therapy, and addressing the restoration of microbial communities following ICU discharge. SUMMARY: Although research focused on microbiome-mediated therapy in critically ill patients has not yielded the results that were anticipated, we should not abandon our efforts to translate promising preclinical findings into clinical practice.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Sepsis , Humans , Microbiota/physiology , Probiotics/therapeutic use , Gastrointestinal Microbiome/physiology , Critical Care/methods , Sepsis/therapy , Critical Illness/therapy
7.
iScience ; 25(8): 104740, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35938048

ABSTRACT

Human studies describing the immunomodulatory role of the intestinal microbiota in systemic infections are lacking. Here, we sought to relate microbiota profiles from 115 patients with community-acquired pneumonia (CAP), both on hospital admission and following discharge, to concurrent circulating monocyte and neutrophil function. Rectal microbiota composition did not explain variation in cytokine responses in acute CAP (median 0%, IQR 0.0%-1.9%), but did one month following hospitalization (median 4.1%, IQR 0.0%-6.6%, p = 0.0035). Gene expression analysis of monocytes showed that undisrupted microbiota profiles following hospitalization were associated with upregulated interferon, interleukin-10, and G-protein-coupled-receptor-ligand-binding pathways. While CAP is characterized by profoundly distorted gut microbiota, the effects of these disruptions on cytokine responses and transcriptional profiles during acute infection were absent or modest. However, rectal microbiota were related to altered cytokine responses one month following CAP hospitalization, which may provide insights into potential mechanisms contributing to the high risk of recurrent infections following hospitalization.

8.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35964875

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Subject(s)
Monocytes , Pneumonia , Cytokines/metabolism , Humans , Interleukin-10/metabolism , Intracellular Space , Lipopolysaccharides/pharmacology , Monocytes/metabolism , Pneumonia/metabolism , Pyruvate Kinase/metabolism , Pyruvic Acid/metabolism , Tricarboxylic Acids , Tumor Necrosis Factor-alpha/metabolism
9.
EBioMedicine ; 81: 104082, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35660785

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) can be caused by a variety of pathogens, of which Streptococcus pneumoniae, Influenza and currently SARS-CoV-2 are the most common. We sought to identify shared and pathogen-specific host response features by directly comparing different aetiologies of CAP. METHODS: We measured 72 plasma biomarkers in a cohort of 265 patients hospitalized for CAP, all sampled within 48 hours of admission, and 28 age-and sex matched non-infectious controls. We stratified the biomarkers into several pathophysiological domains- antiviral response, vascular response and function, coagulation, systemic inflammation, and immune checkpoint markers. We directly compared CAP caused by SARS-CoV-2 (COVID-19, n=39), Streptococcus pneumoniae (CAP-strep, n=27), Influenza (CAP-flu, n=22) and other or unknown pathogens (CAP-other, n=177). We adjusted the comparisons for age, sex and disease severity scores. FINDINGS: Biomarkers reflective of a stronger cell-mediated antiviral response clearly separated COVID-19 from other CAPs (most notably granzyme B). Biomarkers reflecting activation and function of the vasculature showed endothelial barrier integrity was least affected in COVID-19, while glycocalyx degradation and angiogenesis were enhanced relative to other CAPs. Notably, markers of coagulation activation, including D-dimer, were not different between the CAP groups. Ferritin was most increased in COVID-19, while other systemic inflammation biomarkers such as IL-6 and procalcitonin were highest in CAP-strep. Immune checkpoint markers showed distinctive patterns in viral and non-viral CAP, with highly elevated levels of Galectin-9 in COVID-19. INTERPRETATION: Our investigation provides insight into shared and distinct pathophysiological mechanisms in different aetiologies of CAP, which may help guide new pathogen-specific therapeutic strategies. FUNDING: This study was financially supported by the Dutch Research Council, the European Commission and the Netherlands Organization for Health Research and Development.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Pneumonia , Antiviral Agents , Biomarkers , Humans , Inflammation , Pneumonia/etiology , SARS-CoV-2 , Streptococcus pneumoniae
10.
J Infect Dis ; 225(11): 2023-2032, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35100411

ABSTRACT

BACKGROUND: Strongly elevated ferritin levels have been proposed to reflect systemic hyperinflammation in patients admitted to the intensive care unit. Knowledge of the incidence and pathophysiological implications of hyperferritinemia in patients with acute infection admitted to a non-intensive care setting is limited. METHODS: We determined the association between hyperferritinemia, defined by 2 cutoff values (500 and 250 ng/mL), and aberrations in key host response mechanisms among patients with community-acquired pneumonia (CAP) on admission to a general hospital ward (clinicaltrials.gov NCT02928367; trialregister.nl NTR6163). RESULTS: Plasma ferritin levels were higher in patients with CAP (n = 174; median [interquartile ranges], 259.5 [123.1-518.3] ng/mL) than in age- and sex-matched controls without infection (n = 50; 102.8 [53.5-185.7] ng/mL); P < .001); they were ≥500 ng/mL in 46 patients (26%) and ≥250 ng/mL in 90 (52%). Measurements of 26 biomarkers reflective of distinct pathophysiological domains showed that hyperferritinemia was associated with enhanced systemic inflammation, neutrophil activation, cytokine release, endothelial cell activation and dysfunction, and activation of the coagulation system. Results were robust across different cutoff values. CONCLUSIONS: Hyperferritinemia identifies patients with CAP with a broad deregulation of various host response mechanisms implicated in the pathogenesis of sepsis. This could inform future therapeutic strategies targeting subgroups within the CAP population.


Subject(s)
Community-Acquired Infections , Hyperferritinemia , Pneumonia , Ferritins , Humans , Intensive Care Units , Pneumonia/complications
11.
Clin Gastroenterol Hepatol ; 20(6): 1404-1407.e4, 2022 06.
Article in English | MEDLINE | ID: mdl-34303860

ABSTRACT

Although the pathophysiology of asthma is complex, perturbation of the gut microbiota has been associated with an increased risk of asthma development in childhood.1 Disruption and subsequent dysregulation of gut microbiota-related immunologic processes have also been linked to disease severity and response to treatment.2.


Subject(s)
Asthma , Gastrointestinal Microbiome , Adult , Anti-Bacterial Agents/therapeutic use , Asthma/drug therapy , Humans , Proof of Concept Study , Severity of Illness Index
12.
Clin Infect Dis ; 74(5): 776-784, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34156449

ABSTRACT

BACKGROUND: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. METHODS: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. RESULTS: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls. CONCLUSIONS: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.


Subject(s)
Community-Acquired Infections , Microbiota , Respiratory Tract Infections , Adult , Bacteria/genetics , Case-Control Studies , Community-Acquired Infections/diagnosis , Humans , Microbiota/genetics , Nasopharynx/microbiology , Prospective Studies , Respiratory System/microbiology
13.
Gut Microbes ; 13(1): 1995279, 2021.
Article in English | MEDLINE | ID: mdl-34743654

ABSTRACT

Bacterial gut communities might predispose children to develop asthma. Yet, little is known about the role of these micro-organisms in adult asthmatics. We aimed to profile the relationship between fecal microbiota and asthma in a large-scale, ethnically diverse, observational cohort of adults. Fecal microbiota composition of 1632 adults (172 asthmatics and 1460 non-asthmatics) was analyzed using 16S ribosomal RNA gene sequencing. Using extremely randomized trees machine learning models, we assessed the discriminatory ability of gut bacterial features to identify asthmatics from non-asthmatics. Asthma contributed 0.019% to interindividual dissimilarities in intestinal microbiota composition, which was not significant (P = .97). Asthmatics could not be distinguished from non-asthmatics based on individual microbiota composition by an extremely randomized trees classifier model (area under the receiver operating characteristic curve = 0.54). In conclusion, there were no prominent differences in fecal microbiota composition in adult asthmatics when compared to non-asthmatics in an urban, large-sized and ethnically diverse cohort.


Subject(s)
Asthma/microbiology , Bacteria/isolation & purification , Gastrointestinal Microbiome , Adult , Aged , Asthma/ethnology , Asthma/immunology , Bacteria/classification , Bacteria/genetics , Cohort Studies , Feces/microbiology , Female , Humans , Male , Middle Aged , Netherlands/ethnology , Young Adult
14.
EClinicalMedicine ; 39: 101074, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34611613

ABSTRACT

Background Bacterial intestinal communities interact with the immune system and may contribute to protection against community-acquired pneumonia (CAP). Intestinal viruses are closely integrated with these bacterial communities, yet the composition and clinical significance of these communities in CAP patients are unknown. The aims of this exploratory study were to characterise the composition of the rectal bacteriome and virome at hospital admission for CAP, and to determine if microbiota signatures correlate with clinical outcomes. Methods We performed a prospective observational cohort study in CAP patients, admitted to a university or community hospital in the Netherlands between October 2016 and July 2018, and controls. Rectal bacteriome and virome composition were characterised using 16S ribosomal RNA gene sequencing and virus discovery next-generation sequencing, respectively. Unsupervised multi-omics factor analysis was used to assess the co-variation of bacterial and viral communities, which served as primary predictor. The clinical outcomes of interest were the time to clinical stability and the length of hospital stay. Findings 64 patients and 38 controls were analysed. Rectal bacterial alpha (p = 0•0015) and beta diversity (r2 =0•023, p = 0•004) of CAP patients differed from controls. Bacterial and viral microbiota signatures correlated with the time to clinical stability (hazard ratio 0•43, 95% confidence interval 0•20-0•93, p = 0•032) and the length of hospital stay (hazard ratio 0•37, 95% confidence interval 0•17-0•81, p = 0•012), although only the latter remained significant following p-value adjustment for examining multiple candidate cut-points (p = 0•12 and p = 0•046, respectively). Interpretation This exploratory study provides preliminary evidence that intestinal bacteriome and virome signatures could be linked with clinical outcomes in CAP. Such exploratory data, when validated in independent cohorts, could inform the development of a microbiota-based diagnostic panel used to predict clinical outcomes in CAP. Funding Netherlands Organization for Scientific Research and Netherlands Organization for Health Research and Development.

15.
Curr Opin Gastroenterol ; 37(6): 578-585, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34419965

ABSTRACT

PURPOSE OF REVIEW: This review summarizes recent progress in our understanding of the role of the gut microbiota in sepsis pathogenesis and outlines the potential role of microbiota-targeted therapies. RECENT FINDINGS: The composition of the gut microbiome is profoundly distorted during sepsis, with a loss of commensal bacteria and an overgrowth of potential pathogenic micro-organisms. These alterations also extend to nonbacterial intestinal inhabitants. Disruptions of these intestinal communities are associated with both an increased susceptibility to develop sepsis, as well as a higher risk of adverse outcomes. Preclinical studies have characterized the effects of several microbiota-derived metabolites (such as D-lactate, butyrate, and deoxycholic acid) on enhancing the host immune response during critical illness. Microbiota-targeted therapies (e.g. probiotics or fecal microbiota transplantation) might be of benefit, but can also be associated with increased risks of bloodstream infections. SUMMARY: Emerging evidence display an important role of gut micro-organisms (including bacteria, fungi, eukaryotic viruses, and bacteriophages) and their derived metabolites in both the susceptibility to, as well as outcomes of sepsis. Despite recent progress in the mechanistic understanding of microbiota-mediated protection, clinical breakthroughs in the development of microbiota-based prognostic tools or therapies are thus far lacking in the field of sepsis.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Sepsis , Dysbiosis , Fecal Microbiota Transplantation , Humans , Probiotics/therapeutic use , Sepsis/therapy
16.
Genome Med ; 13(1): 131, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34399830

ABSTRACT

BACKGROUND: The plasticity of monocytes enables them to exert multiple roles during an immune response, including promoting immune tolerance. How monocytes alter their functions to convey immune tolerance in the context of lower respiratory tract infections in humans is not well understood. Here, we sought to identify epigenetic and transcriptomic features of cytokine production capacity in circulating monocytes during community-acquired pneumonia (CAP). METHODS: Circulating CD14+ monocytes were obtained from the blood of CAP patients included in a longitudinal, observational cohort study, on hospitalization (acute stage, n=75), and from the same patients after a 1-month follow-up (recovery stage, n=56). Age and sex-matched non-infectious participants were included as controls (n=41). Ex vivo cytokine production after lipopolysaccharide (LPS) exposure was assessed by multiplex assay. Transcriptomes of circulating monocytes were generated by RNA-sequencing, and DNA methylation levels in the same monocytes were measured by reduced representation bisulfite sequencing. Data were integrated by fitting projection-to-latent-structure models, and signatures derived by partial least squares discrimination. RESULTS: Monocytes captured during the acute stage exhibited impaired TNF, IL-1ß, IL-6, and IL-10 production after ex vivo stimulation with LPS, relative to controls. IL-6 production was not resolved in recovery monocytes. Multivariate analysis of RNA-sequencing data identified 2938 significantly altered RNA transcripts in acute-stage monocytes (fold expression ≤-1.5 or ≥1.5; adjusted p ≤ 0.01), relative to controls. Comparing DNA methylation levels in circulating monocytes of CAP patients to controls revealed minimal differences, specifically in DNAse hypersensitive sites (HS) of acute-stage monocytes. Data integration identified a cholesterol biosynthesis gene signature and DNAse HS axis of IL-1ß and IL-10 production (R2 =0.51). CONCLUSIONS: Circulating monocytes obtained from CAP patients during the acute stage exhibited impaired cytokine production capacities, indicative of reprogramming to a state of immune tolerance, which was not fully resolved after 1 month. Our split-sample study showed that 51% of the immune tolerance phenotype can be explained, at least in part, by coordinated shifts in cholesterol biosynthesis gene expression and DNAse HS methylation levels. A multi-scale model identified an epigenetic and transcriptomic signature of immune tolerance in monocytes, with implications for future interventions in immunosuppression. TRIAL REGISTRATION: NCT number NCT02928367.


Subject(s)
Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Immune Tolerance/genetics , Monocytes/immunology , Monocytes/metabolism , Transcriptome , Comorbidity , Computational Biology/methods , Cytokines/genetics , Cytokines/metabolism , Epigenomics/methods , Female , High-Throughput Nucleotide Sequencing , Humans , Inflammation Mediators/metabolism , Male , Sequence Analysis, DNA
17.
Crit Care Med ; 49(11): 1901-1911, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33935163

ABSTRACT

OBJECTIVES: Plasma ferritin levels above 4,420 ng/mL have been proposed as a diagnostic marker for macrophage activation-like syndrome in sepsis and used for selection of sepsis patients for anti-inflammatory therapy. We here sought to determine the frequency, presentation, outcome, and host response aberrations of macrophage activation-like syndrome, as defined by admission ferritin levels above 4,420 ng/mL, in critically ill patients with community-acquired pneumonia. DESIGN: A prospective observational cohort study. SETTING: ICUs in two tertiary hospitals in the Netherlands. PATIENTS: One hundred fifty-three patients admitted with community-acquired pneumonia. MEASUREMENTS AND MAIN RESULTS: Patients were stratified in community-acquired pneumonia-macrophage activation-like syndrome (n = 15; 9.8%) and community-acquired pneumonia-control groups (n = 138; 90.2%) based on an admission plasma ferritin level above or below 4,420 ng/mL, respectively. Community-acquired pneumonia-macrophage activation-like syndrome patients presented with a higher disease severity and had a higher ICU mortality (46.7% vs 12.3% in community-acquired pneumonia-controls; p = 0.002). Twenty-three plasma biomarkers indicative of dysregulation of key host response pathways implicated in sepsis pathogenesis (systemic inflammation, cytokine responses, endothelial cell activation, and barrier function, coagulation activation) were more disturbed in community-acquired pneumonia-macrophage activation-like syndrome patients. Hematologic malignancies were overrepresented in community-acquired pneumonia-macrophage activation-like syndrome patients (33.3% vs 5.1% in community-acquired pneumonia-controls; p = 0.001). In a subgroup analysis excluding patients with hematologic malignancies (n = 141), differences in mortality were not present anymore, but the exaggerated host response abnormalities in community-acquired pneumonia-macrophage activation-like syndrome patients remained. CONCLUSIONS: Macrophage activation-like syndrome in critically ill patients with community-acquired pneumonia occurs more often in patients with hematologic malignancies and is associated with deregulation of multiple host response pathways.


Subject(s)
Community-Acquired Infections/blood , Critical Illness/therapy , Ferritins/blood , Macrophage Activation , Pneumonia, Bacterial/blood , Aged , Biomarkers/blood , Cohort Studies , Community-Acquired Infections/therapy , Humans , Intensive Care Units , Male , Middle Aged , Netherlands , Pneumonia, Bacterial/therapy , Prospective Studies , Severity of Illness Index
18.
mSystems ; 6(2)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33727397

ABSTRACT

Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome.IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).

19.
Transl Stroke Res ; 12(4): 581-592, 2021 08.
Article in English | MEDLINE | ID: mdl-33052545

ABSTRACT

In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 µM, Wilcoxon p < 0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77, p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.


Subject(s)
Gastrointestinal Microbiome , Aged , Anaerobiosis , Bacteria , Case-Control Studies , Humans , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...