Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cogn Neurosci ; 68: 101401, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38870603

ABSTRACT

Infants' motivation to engage with the social world depends on the interplay between individual brain's characteristics and previous exposure to social cues such as the parent's smile or eye contact. Different hypotheses about why specific combinations of emotional expressions and gaze direction engage children have been tested with group-level approaches rather than focusing on individual differences in the social brain development. Here, a novel Artificial Intelligence-enhanced brain-imaging approach, Neuroadaptive Bayesian Optimisation (NBO), was applied to infant electro-encephalography (EEG) to understand how selected neural signals encode social cues in individual infants. EEG data from 42 6- to 9-month-old infants looking at images of their parent's face were analysed in real-time and used by a Bayesian Optimisation algorithm to identify which combination of the parent's gaze/head direction and emotional expression produces the strongest brain activation in the child. This individualised approach supported the theory that the infant's brain is maximally engaged by communicative cues with a negative valence (angry faces with direct gaze). Infants attending preferentially to faces with direct gaze had increased positive affectivity and decreased negative affectivity. This work confirmed that infants' attentional preferences for social cues are heterogeneous and shows the NBO's potential to study diversity in neurodevelopmental trajectories.

2.
J Exp Child Psychol ; 139: 203-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26150055

ABSTRACT

From early in life, young children eagerly engage in social interactions. Yet, they still have difficulties in performing well-coordinated joint actions with others. Adult literature suggests that two processes are important for smooth joint action coordination: action prediction and inhibitory control. The aim of the current study was to disentangle the potential role of these processes in the early development of joint action coordination. Using a simple turn-taking game, we assessed 2½-year-old toddlers' joint action coordination, focusing on timing variability and turn-taking accuracy. In two additional tasks, we examined their action prediction capabilities with an eye-tracking paradigm and examined their inhibitory control capabilities with a classic executive functioning task (gift delay task). We found that individual differences in action prediction and inhibitory action control were distinctly related to the two aspects of joint action coordination. Toddlers who showed more precision in their action predictions were less variable in their action timing during the joint play. Furthermore, toddlers who showed more inhibitory control in an individual context were more accurate in their turn-taking performance during the joint action. On the other hand, no relation between timing variability and inhibitory control or between turn-taking accuracy and action prediction was found. The current results highlight the distinct role of action prediction and inhibitory action control for the quality of joint action coordination in toddlers. Underlying neurocognitive mechanisms and implications for processes involved in joint action coordination in general are discussed.


Subject(s)
Inhibition, Psychological , Interpersonal Relations , Play and Playthings , Psychomotor Performance/physiology , Child, Preschool , Eye Movements/physiology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...