Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21436, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38052807

ABSTRACT

Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.


Subject(s)
Nitric Oxide Synthase Type III , Vascular Endothelial Growth Factor A , Humans , Caveolae/metabolism , Cells, Cultured , Dextrans , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
2.
J Pers Med ; 11(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34945769

ABSTRACT

BACKGROUND: The aim of this study was to investigate whether miRNA levels in the circulation could serve as a predictive biomarker for responsiveness to anti-vascular endothelial growth factor (VEGF) therapy in patients with diabetic macular edema. METHODS: Whole blood samples were collected at baseline from 135 patients who were included in the BRDME study, a randomized controlled comparative trial of monthly bevacizumab or ranibizumab treatment for 6 months in patients with diabetic macular edema (Trialregister.nl, NTR3247). Best corrected visual acuity letter score (BCVA) and retinal central area thickness (CAT) were measured monthly during the 6-month follow-up. Levels of selected miRNAs were quantified. RESULTS: Following linear regression analysis, the levels of four miRNAs were negatively associated with baseline CAT. Multivariable regression analysis confirmed this association for miR-181a. No associations with changes in CAT after 3 or 6 months of anti-VEGF treatment were found. In addition, no associations with miRNA levels with baseline BCVA or change in BCVA after 3 or 6 months of anti-VEGF treatment were found. CONCLUSIONS: Circulating miR-181a levels were negatively associated with CAT at baseline. However, no associations between miRNA levels and the response to anti-VEGF therapy were found.

3.
Cells ; 10(4)2021 04 16.
Article in English | MEDLINE | ID: mdl-33923753

ABSTRACT

During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA-VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.


Subject(s)
Heparitin Sulfate/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Neuropilin-2/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Apoptosis , Humans , Lipoproteins, VLDL/metabolism , Sulfatases/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Mol Biol Rep ; 47(4): 2561-2572, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32133604

ABSTRACT

PURPOSE: We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis. METHODS: Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum. RESULTS: Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling. CONCLUSIONS: Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 4/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Insulin-Like Growth Factor Binding Protein 3/physiology , Insulin-Like Growth Factor Binding Protein 4/physiology , Insulin-Like Growth Factor I , Insulin-Like Growth Factor II , Morphogenesis , Neovascularization, Pathologic/metabolism , Organoids/metabolism , Receptor, IGF Type 1 , Receptor, IGF Type 2 , Signal Transduction
5.
PLoS One ; 14(1): e0209563, 2019.
Article in English | MEDLINE | ID: mdl-30615643

ABSTRACT

The nonspecific divalent cation channel TRPM7 (transient receptor potential-melastatin-like 7) is involved in many Ca2+ and Mg2+-dependent cellular processes, including survival, proliferation and migration. TRPM7 expression predicts metastasis and recurrence in breast cancer and several other cancers. In cultured cells, it can induce an invasive phenotype by promoting Ca2+-mediated epithelial-mesenchymal transition. We previously showed that in neuroblastoma cells that overexpress TRPM7 moderately, stimulation with Ca2+-mobilizing agonists leads to a characteristic sustained influx of Ca2+. Here we report that sustained influx through TRPM7 is abruptly abrogated by elevating intracellular levels of cyclic adenosine monophosphate (cAMP). Using pharmacological inhibitors and overexpression studies we show that this blockage is mediated by the cAMP effector Protein Kinase A (PKA). Mutational analysis demonstrates that the Serine residue S1269, which is present proximal to the coiled-coil domain within the protein c-terminus, is responsible for sensitivity to cAMP.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Neurons/metabolism , TRPM Cation Channels/metabolism , Animals , Calcium Signaling/drug effects , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Isoquinolines/pharmacology , Mice , Neurons/drug effects , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology
6.
Sci Rep ; 5: 17225, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26611125

ABSTRACT

Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics.


Subject(s)
Actins/genetics , Adherens Junctions/metabolism , Cell Adhesion Molecules/genetics , Cytoskeletal Proteins/genetics , Focal Adhesions/metabolism , LIM Domain Proteins/genetics , Microfilament Proteins/genetics , Phosphoproteins/genetics , Zyxin/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Adherens Junctions/ultrastructure , Animals , Biomechanical Phenomena , Cell Adhesion/genetics , Cell Adhesion Molecules/metabolism , Cytoskeletal Proteins/metabolism , Dogs , Focal Adhesions/ultrastructure , Gene Expression Regulation , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , LIM Domain Proteins/metabolism , Madin Darby Canine Kidney Cells , Mechanotransduction, Cellular , Microfilament Proteins/metabolism , Mutation , Phosphoproteins/metabolism , Protein Binding , RNA-Binding Proteins , Vinculin/genetics , Vinculin/metabolism , Zyxin/metabolism , alpha Catenin/genetics , alpha Catenin/metabolism
7.
Nature ; 508(7494): 123-7, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670648

ABSTRACT

The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.


Subject(s)
Fetus/immunology , Immunity, Innate/immunology , Prenatal Exposure Delayed Effects/immunology , Tretinoin/immunology , Tretinoin/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Diet , Female , Fetus/drug effects , Immunity, Innate/drug effects , Lymphoid Tissue/cytology , Lymphoid Tissue/drug effects , Lymphoid Tissue/embryology , Lymphoid Tissue/immunology , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Retinoic Acid/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tretinoin/administration & dosage , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL