Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Seizure ; 122: 19-25, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39303463

ABSTRACT

PURPOSE: Imaging and resection strategies for pediatric gangliogliomas (GG) and dysembryoplastic neuroepitheliomas (DNET) presenting with epilepsy were retrospectively analyzed in a consecutive institutional series of surgically treated patients. METHODS: Twenty-two children (median 8 years, 3-18 years) presented with seizures for 30 months median (14-55.2 months) due to a histologically verified GG/DNET. RESULTS: There were 20 GG and 2 DNT, 68 % located temporal, 32 % extra-temporal. Seizure history was significantly longer in temporal cases (38 versus 14 months median, p < 0.01). MRI contrast enhancement was present in 50 % and methionine (MET) positron emission tomography (PET) uptake in 70 % (standard uptake values (SUVs) 2.92 mean, from 1.6 to 6.4). 27 % had glucose PET hypometabolism. Primarily, in temporal GG, ECoG (electrocorticography) -guided lesionectomies were performed in 87 % and antero-mesial temporal lobe resections (AMTLR) in 13 %, whereas in extra-temporal GG/DNETs, lesionectomies were performed in 100 %. ILAE Class 1 seizure outcome was primarily achieved in 73 % of the temporal cases, and was increased to 93 % by performing six repeat surgeries using AMTLR. Extratemporal patients experienced ILAE Class 1 seizure outcomes in 86 % without additional surgeries, although harboring significantly more residual tumor (p < 0.005, mean follow-up 28 months). CONCLUSION: In children, MET PET imaging for suspected GG is proposed preoperatively showing a high diagnostic sensitivity and an option to delineate the lesions for navigated resection, whereas MRI contrast behavior was of no differential diagnostic use. As a surgical strategy we propose primarily lesionectomies for extratemporal but AMTLR for temporal GG respecting eloquent brain areas.

2.
Neuro Oncol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171767

ABSTRACT

BACKGROUND: Ependymoma (EPN) is not a uniform disease but represents different disease types with biological and clinical heterogeneity. However, the pattern of when and where different types of EPN relapse is not yet comprehensively described. METHODS: We assembled 269 relapsed intracranial EPN from pediatric (n=233) and adult (n=36) patients from European and Northern American cohorts and correlated DNA methylation patterns and copy-number alterations with clinical information. RESULTS: The cohort comprised the following molecular EPN types: PF-EPN-A (n=177), ST-EPN-ZFTA (n=45), PF-EPN-B (n=31), PF-EPN-SE (n=12), and ST-EPN-YAP (n=4). First relapses of PF-EPN-B (PF: posterior-fossa) and PF-EPN-SE (SE: subependymoma) occurred later than of PF-EPN-A, ST-EPN-YAP (ST: supratentorial), or ST-EPN-ZFTA (median time to relapse: 4.3 and 6.0 years vs. 1.9/1.0/2.4 years; p<0.01). Metastatic or combined recurrences in PF-EPN-B and -A more often involved the spinal cord than in ST-EPN-ZFTA (72.7% and 40.0 vs. 12.5%; p<0.01). No distant relapses were observed in ST-EPN-YAP (n=4) or PF-EPN-SE (n=12). Post-relapse survival (PRS) was poor for PF-EPN-A and ST-EPN-ZFTA (5-year PRS: 44.5±4.4/47.8±9.1%), whereas PF-EPN-B and PF-EPN-SE displayed a 5-year PRS of 89.5±7.1/90.0±9.5% (p=0.03). However, 10-year PRS for PF-EPN-B dropped to 45.8±17.3%. Neither between radiation field and relapse pattern nor between radiation field and spinal involvement at relapse an impact was identified. Notably, all patients with relapsed ST-EPN-YAP did not receive upfront radiotherapy, but were successfully salvaged using irradiation at relapse. CONCLUSIONS: Relapse patterns of specific EPN types are different. Future clinical trials, treatment adaptions, duration of surveillance and diagnostics should be planned incorporating entity-specific relapse information.

3.
AJNR Am J Neuroradiol ; 45(9): 1327-1334, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38991765

ABSTRACT

BACKGROUND AND PURPOSE: The radiologic evaluation of ongoing myelination is currently limited prenatally. Novel quantitative MR imaging modalities provide relaxometric properties that are linked to myelinogenesis. In this retrospective postmortem imaging study, the capability of Synthetic MR imaging and MR fingerprinting-derived relaxometry for tracking fetal myelin development was investigated. Moreover, the consistency of results for both MR approaches was analyzed. MATERIALS AND METHODS: In 26 cases, quantitative postmortem fetal brain MR data were available (gestational age range, 15 + 1 to 32 + 1; female/male ratio, 14/12). Relaxometric measurements (T1-/T2-relexation times) were determined in the medulla oblongata and the midbrain using Synthetic MR imaging/MR fingerprinting-specific postprocessing procedures (Synthetic MR imaging and MR Robust Quantitative Tool for MR fingerprinting). The Pearson correlations were applied to detect relationships between T1-relaxation times/T2-relaxation times metrics and gestational age at MR imaging. Intraclass correlation coefficients were calculated to assess the consistency of the results provided by both modalities. RESULTS: Both modalities provided quantitative data that revealed negative correlations with gestational age at MR imaging: Synthetic MR imaging-derived relaxation times (medulla oblongata [r = -0.459; P = .021]; midbrain [r = -0.413; P = .040]), T2-relaxation times (medulla oblongata [r = -0.625; P < .001]; midbrain [r = -0.571; P = .003]), and MR fingerprinting-derived T1-relaxation times (medulla oblongata [r = -0.433; P = .035]; midbrain [r = -0.386; P = .062]), and T2-relaxation times (medulla oblongata [r =-0.883; P < .001]; midbrain [r = -0.890; P < .001]).The intraclass correlation coefficient analysis for result consistency between both MR approaches ranged between 0.661 (95% CI, 0.351-0.841) (T2-relaxation times: medulla oblongata) and 0.920 (95% CI, 0.82-0.965) (T1-relaxation times: midbrain). CONCLUSIONS: There is a good-to-excellent consistency between postmortem Synthetic MR imaging and MR fingerprinting myelin quantifications in fetal brains older than 15 + 1 gestational age. The strong correlations between quantitative myelin metrics and gestational age indicate the potential of quantitative MR imaging to identify delayed or abnormal states of myelination at prenatal stages of cerebral development.


Subject(s)
Magnetic Resonance Imaging , Myelin Sheath , Humans , Female , Magnetic Resonance Imaging/methods , Male , Retrospective Studies , Brain Stem/diagnostic imaging , Gestational Age , Autopsy/methods , Pregnancy
4.
Fam Cancer ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031223

ABSTRACT

Biallelic germline pathogenic variants in one of the four mismatch repair genes (MSH2, MSH6, MLH1 and PMS2) cause a very rare, highly penetrant, childhood-onset cancer syndrome, called constitutional mismatch repair deficiency (CMMRD). The European consortium "Care for CMMRD" (C4CMMRD) was founded in Paris in 2013 to facilitate international collaboration and improve our knowledge of this rare cancer predisposition syndrome. Following initial publications on diagnostic criteria and surveillance guidelines for CMMRD, several partners collaborating within the C4CMMRD consortium have worked on and published numerous CMMRD-related clinical and biological projects. Since its formation, the C4CMMRD consortium held meetings every 1-2 years (except in 2020 and 2021 due to the Covid 19 pandemic). The sixth C4CMMRD meeting was held in Paris in November 2022, and brought together 42 participants from nine countries involved in various fields of CMMRD healthcare. The aim was to update members on the latest results and developments from ongoing research, and to discuss and initiate new study proposals. As previously done for the fifth meeting of the C4CMMRD group, this report summarizes data presented at this meeting.

5.
Wien Klin Wochenschr ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819451

ABSTRACT

OBJECTIVE: To identify factors for tumor relapse and poor outcome in patients with meningiomas in the first two decades of life. METHODS: All patients ≤ 21 years of age who underwent resection of a meningioma at the department of neurosurgery, Medical University of Vienna between 1989 and 2022 were included in this retrospective study. Clinical and radiological data were extracted from the medical records. Outcome and tumor relapse were analyzed for tumor location, histological findings and extent of resection. RESULTS: In this study 18 patients were included, 6 meningiomas were located in the skull base, 5 in the convexity and 7 in other locations including intraventricular and spine (2 patients each), falx, intraparenchymal and optic nerve sheath. Most frequent symptoms were seizures and cranial nerve palsy. In total 56% of the meningiomas were World Health organization (WHO) grade 1, 39% grade 2 and 5% grade 3. Gross total resection was achieved in 67%. The overall relapse rate was 61% and 50% underwent repeat surgery. All patients with convexity meningiomas became seizure free and had a favorable outcome. Relapse and clinical outcome were independent of WHO grade among the whole cohort but the outcome significantly depended on the WHO grade when patients with skull base meningiomas were analyzed as a subgroup. The relapse rate was significantly higher in cases of skull base location (100% vs. 42%, p = 0.038) and after subtotal resection (100% vs. 42%, p = 0.038). Clinical outcome was also significantly worse and the rate of complications was higher in patients with skull base meningiomas. CONCLUSION: Patients with convexity meningiomas in the first two decades of life have a good outcome due to high chance of gross total resection. Patients with skull base meningioma are at high risk of relapse and poor outcome, particularly those with WHO grades 2 and 3. Subtotal resection in patients with skull base location is probably the main reason for this difference.

6.
Paediatr Drugs ; 26(4): 429-440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587585

ABSTRACT

BACKGROUND: To date, evidence has been lacking regarding bevacizumab pharmacokinetics in the cerebrospinal fluid (CSF). OBJECTIVE: This study assessed the penetration of bevacizumab, as part of a metronomic antiangiogenic treatment regimen, into the CSF of children, adolescents, and young adults with recurrent brain tumors. PATIENTS AND METHODS: Serum and CSF concentrations, malignant cells, and vascular endothelial growth factor A (VEGF-A) were analyzed in 12 patients (5-27 years) following 10 mg/kg bevacizumab intravenous biweekly administration (EudraCT number 2009-013024-23). A population pharmacokinetic model including body weight, albumin, and tumor type as influential factors was extended to quantify the CSF penetration of bevacizumab. RESULTS: Apart from in serum (minimum concentration/maximum concentration [Cmin/Cmax] 77.0-305/267-612 mg/L, median 144/417 mg/L), bevacizumab could be quantified in the CSF (0.01-2.26 mg/L, median 0.35 mg/L). The CSF/serum ratio was 0.16 and highly variable between patients. Malignant cells could be detected in CSF before initiation of treatment in five of 12 patients; after treatment, the CSF was cleared in all patients. VEGF-A was detected in three patients before treatment (mean ± SD: 20 ± 11 pg/mL), and was still measurable in one of these patients despite treatment (16 pg/mL). CONCLUSIONS: This pharmacokinetic pilot study indicated penetration of bevacizumab into the CSF in a population of children, adolescents, and young adults with recurrent brain tumors.


Subject(s)
Angiogenesis Inhibitors , Bevacizumab , Brain Neoplasms , Neoplasm Recurrence, Local , Humans , Bevacizumab/pharmacokinetics , Bevacizumab/administration & dosage , Bevacizumab/cerebrospinal fluid , Child , Adolescent , Brain Neoplasms/drug therapy , Brain Neoplasms/cerebrospinal fluid , Male , Female , Child, Preschool , Adult , Young Adult , Neoplasm Recurrence, Local/cerebrospinal fluid , Neoplasm Recurrence, Local/drug therapy , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/cerebrospinal fluid , Angiogenesis Inhibitors/administration & dosage , Vascular Endothelial Growth Factor A/cerebrospinal fluid , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/cerebrospinal fluid , Antineoplastic Agents, Immunological/administration & dosage
7.
Pediatr Blood Cancer ; 71(3): e30836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177074

ABSTRACT

Alterations of the fibroblast growth factor (FGF) signalling pathway are increasingly recognized as frequent oncogenic drivers of paediatric brain tumours. We report on three patients treated with the selective FGFR1-4 inhibitor erdafitinib. Two patients were diagnosed with a posterior fossa ependymoma group A (PFA EPN) and one with a low-grade glioma (LGG), harbouring FGFR3/FGFR1 overexpression and an FGFR1 internal tandem duplication (ITD), respectively. While both EPN patients did not respond to erdafitinib treatment, the FGFR1-ITD-harbouring tumour showed a significant decrease in tumour volume and contrast enhancement throughout treatment. The tumour remained stable 6 months after treatment discontinuation.


Subject(s)
Brain Neoplasms , Glioma , Child , Humans , Feasibility Studies , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Signal Transduction , Brain Neoplasms/drug therapy
8.
Nat Med ; 29(12): 3067-3076, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944590

ABSTRACT

Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Biomarkers , Gene Expression Profiling , Meningeal Neoplasms/genetics , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/radiotherapy , Meningioma/pathology , Neoplasm Recurrence, Local/pathology , Prospective Studies
9.
Cancers (Basel) ; 15(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37835571

ABSTRACT

Developmental gene expression data from medulloblastoma (MB) suggest that WNT-MB originates from the region of the embryonic lower rhombic lip (LRL), whereas SHH-MB and non-WNT/non-SHH MB arise from cerebellar precursor matrix regions. This study aimed to analyze detailed intraoperative data with regard to the site of origin (STO) and compare these findings with the hypothesized regions of origin associated with the molecular group. A review of the institutional database identified 58 out of 72 pediatric patients who were operated for an MB at our department between 1996 and 2020 that had a detailed operative report and a surgical video as well as clinical and genetic classification data available for analysis. The STO was assessed based on intraoperative findings. Using the intraoperatively defined STO, "correct" prediction of molecular groups was feasible in 20% of WNT-MB, 60% of SHH-MB and 71% of non-WNT/non-SHH MB. The positive predictive values of the neurosurgical inspection to detect the molecular group were 0.21 (95% CI 0.08-0.48) for WNT-MB, 0.86 (95% CI 0.49-0.97) for SHH-MB and 0.73 (95% CI 0.57-0.85) for non-WNT/non-SHH MB. The present study demonstrated a limited predictive value of the intraoperatively observed STO for the prediction of the molecular group of MB.

10.
JAMA Oncol ; 9(12): 1688-1695, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37883081

ABSTRACT

Importance: Medulloblastoma recurrence in patients who have previously received irradiation has a dismal prognosis and lacks a standard salvage regimen. Objective: To evaluate the response rate of pediatric patients with medulloblastoma recurrence using an antiangiogenic metronomic combinatorial approach (Medulloblastoma European Multitarget Metronomic Anti-Angiogenic Trial [MEMMAT]). Design, Setting, and Participants: This phase 2, investigator-initiated, multicenter nonrandomized controlled trial assessed 40 patients with relapsed or refractory medulloblastoma without a ventriculoperitoneal shunt who were younger than 20 years at original diagnosis. Patients were enrolled between April 1, 2014, and March 31, 2021. Interventions: Treatment consisted of daily oral thalidomide, fenofibrate, celecoxib, and alternating 21-day cycles of low-dose (metronomic) oral etoposide and cyclophosphamide, supplemented by intravenous bevacizumab and intraventricular therapy consisting of alternating etoposide and cytarabine. Main Outcomes and Measures: The primary end point was response after 6 months of antiangiogenic metronomic therapy. Secondary end points included progression-free survival (PFS), overall survival (OS), and quality of life. Adverse events were monitored to assess safety. Results: Of the 40 patients (median [range] age at treatment start, 10 [4-17] years; 25 [62.5%] male) prospectively enrolled, 23 (57.5%) achieved disease control after 6 months of treatment, with a response detected in 18 patients (45.0%). Median OS was 25.5 months (range, 10.9-40.0 months), and median PFS was 8.5 months (range, 1.7-15.4 months). Mean (SD) PFS at both 3 and 5 years was 24.6% (7.9%), while mean (SD) OS at 3 and 5 years was 43.6% (8.5%) and 22.6% (8.8%), respectively. No significant differences in PFS or OS were evident based on molecular subgroup analysis or the number of prior recurrences. In patients demonstrating a response, mean (SD) overall 5-year PFS was 49.7% (14.3%), and for patients who remained progression free for the first 12 months of treatment, mean (SD) 5-year PFS was 66.7% (16.1%). Treatment was generally well tolerated. Grade 3 to 4 treatment-related adverse events included myelosuppression, infections, seizures, and headaches. One heavily pretreated patient with a third recurrence died of secondary acute myeloid leukemia. Conclusions and Relevance: This feasible and well-tolerated MEMMAT combination regimen demonstrated promising activity in patients with previously irradiated recurrent medulloblastoma. Given these results, this predominantly oral, well-tolerated, and outpatient treatment warrants further evaluation. Trial Registration: ClinicalTrials.gov Identifier: NCT01356290.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Male , Child , Child, Preschool , Adolescent , Female , Medulloblastoma/drug therapy , Medulloblastoma/etiology , Etoposide , Quality of Life , Administration, Metronomic , Brain Neoplasms/drug therapy , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/etiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Acta Neuropathol ; 146(3): 527-541, 2023 09.
Article in English | MEDLINE | ID: mdl-37450044

ABSTRACT

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.


Subject(s)
DNA Copy Number Variations , Disease Progression , Epigenesis, Genetic , Gene Expression Profiling , Recurrence , Rhabdoid Tumor , Teratoma , Child , Child, Preschool , Female , Humans , Infant , Male , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 10/genetics , Cohort Studies , Dendritic Cells , DNA Copy Number Variations/genetics , DNA Methylation , Histology , Mitosis , Rhabdoid Tumor/classification , Rhabdoid Tumor/genetics , Rhabdoid Tumor/immunology , Rhabdoid Tumor/pathology , Sequence Analysis, RNA , Teratoma/classification , Teratoma/genetics , Teratoma/immunology , Teratoma/pathology , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/genetics
12.
Neuro Oncol ; 25(10): 1731-1749, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37279174

ABSTRACT

In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pathology, Molecular , Mutation , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , World Health Organization
13.
Cancers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37173990

ABSTRACT

BACKGROUND: Liquid biopsy diagnostic methods are an emerging complementary tool to imaging and pathology techniques across various cancer types. However, there is still no established method for the detection of molecular alterations and disease monitoring in MB, the most common malignant CNS tumor in the pediatric population. In the presented study, we investigated droplet digital polymerase chain reaction (ddPCR) as a highly sensitive method for the detection of MYC amplification in bodily fluids of group 3 MB patients. METHODS: We identified a cohort of five MYC-amplified MBs by methylation array and FISH. Predesigned and wet-lab validated probes for ddPCR were used to establish the detection method and were validated in two MYC-amplified MB cell lines as well as tumor tissue of the MYC-amplified cohort. Finally, a total of 49 longitudinal CSF samples were analyzed at multiple timepoints during the course of the disease. RESULTS: Detection of MYC amplification by ddPCR in CSF showed a sensitivity and specificity of 90% and 100%, respectively. We observed a steep increase in amplification rate (AR) at disease progression in 3/5 cases. ddPCR was proven to be more sensitive than cytology for the detection of residual disease. In contrast to CSF, MYC amplification was not detectable by ddPCR in blood samples. CONCLUSIONS: ddPCR proves to be a sensitive and specific method for the detection of MYC amplification in the CSF of MB patients. These results warrant implementation of liquid biopsy in future prospective clinical trials to validate the potential for improved diagnosis, disease staging and monitoring.

14.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37112888

ABSTRACT

BACKGROUND: There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. METHODS: We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. RESULTS: All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic-ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). CONCLUSIONS: Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release.


Subject(s)
COVID-19 , Cognitive Dysfunction , Nervous System Diseases , Neuritis , White Matter , Humans , Aged , COVID-19/complications , SARS-CoV-2 , White Matter/pathology , Preexisting Condition Coverage , Nervous System Diseases/pathology , Cognitive Dysfunction/etiology
16.
Neuro Oncol ; 25(10): 1871-1882, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36916248

ABSTRACT

BACKGROUND: Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS: Across 6 European BIOMECA laboratories, we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via fluorescent in situ hybridization (FISH) and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS: DNA Methylation profiling classified 65.3% (n = 96/147) of cases as EPN-PFA and 15% (n = 22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99%-100% across 3 centers). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP-fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-center concordance and low sensitivity and specificity while MIP, MLPA, and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS: We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q, and CDKN2A loss while FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches.


Subject(s)
Ependymoma , Histones , Child , Adolescent , Humans , Histones/genetics , Tenascin/genetics , In Situ Hybridization, Fluorescence , Prospective Studies , Biomarkers , Ependymoma/diagnosis , Ependymoma/genetics , Ependymoma/pathology
17.
Res Sq ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993741

ABSTRACT

Background: Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and current indications for postoperative radiotherapy are controversial. Recent studies have proposed prognostic meningioma classification systems using DNA methylation profiling, copy number variants, DNA sequencing, RNA sequencing, histology, or integrated models based on multiple combined features. Targeted gene expression profiling has generated robust biomarkers integrating multiple molecular features for other cancers, but is understudied for meningiomas. Methods: Targeted gene expression profiling was performed on 173 meningiomas and an optimized gene expression biomarker (34 genes) and risk score (0 to 1) was developed to predict clinical outcomes. Clinical and analytical validation was performed on independent meningiomas from 12 institutions across 3 continents (N = 1856), including 103 meningiomas from a prospective clinical trial. Gene expression biomarker performance was compared to 9 other classification systems. Results: The gene expression biomarker improved discrimination of postoperative meningioma outcomes compared to all other classification systems tested in the independent clinical validation cohort for local recurrence (5-year area under the curve [AUC] 0.81) and overall survival (5-year AUC 0.80). The increase in area under the curve compared to the current standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval [CI] 0.07-0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% CI 0.37-0.78, P = 0.0001) and re-classified up to 52.0% meningiomas compared to conventional clinical criteria, suggesting postoperative management could be refined for 29.8% of patients. Conclusions: A targeted gene expression biomarker improves discrimination of meningioma outcomes compared to recent classification systems and predicts postoperative radiotherapy responses.

18.
Acta Neuropathol ; 145(5): 667-680, 2023 05.
Article in English | MEDLINE | ID: mdl-36933012

ABSTRACT

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Neoplasms, Neuroepithelial , Humans , Young Adult , Biomarkers, Tumor/genetics , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Gene Fusion , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Receptor Protein-Tyrosine Kinases/genetics , X-linked Nuclear Protein/genetics
20.
Neuro Oncol ; 25(5): 813-826, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36632791

ABSTRACT

The mainstay of treatment for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a part of the standard of care, however, the predictive significance of most of these targets in central nervous system (CNS) tumors remains less well-studied. Despite that, there is increasing use of advanced molecular diagnostics that identify potential targets, and tumor-agnostic regulatory approvals on targets also present in CNS tumors have been granted. This raises the question of when and for which targets it is meaningful to test in adult patients with CNS tumors. This evidence-based guideline reviews the evidence available for targeted treatment for alterations in the RAS/MAPK pathway (BRAF, NF1), in growth factor receptors (EGFR, ALK, fibroblast growth factor receptor (FGFR), neurotrophic tyrosine receptor kinase (NTRK), platelet-derived growth factor receptor alpha, and ROS1), in cell cycle signaling (CDK4/6, MDM2/4, and TSC1/2) and altered genomic stability (mismatch repair, POLE, high tumor mutational burden (TMB), homologous recombination deficiency) in adult patients with gliomas, glioneuronal and neuronal tumors. At present, targeted treatment for BRAF p.V600E alterations is to be considered part of the standard of care for patients with recurrent gliomas, pending regulatory approval. For approved tumor agnostic treatments for NTRK fusions and high TMB, the evidence for efficacy in adult patients with CNS tumors is very limited, and treatment should preferably be given within prospective clinical registries and trials. For targeted treatment of CNS tumors with FGFR fusions or mutations, clinical trials are ongoing to confirm modest activity so far observed in basket trials. For all other reviewed targets, evidence of benefit in CNS tumors is currently lacking, and testing/treatment should be in the context of available clinical trials.


Subject(s)
Glioma , Protein-Tyrosine Kinases , Humans , Adult , Proto-Oncogene Proteins B-raf/genetics , Prospective Studies , Biomarkers, Tumor/genetics , Proto-Oncogene Proteins , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Receptor Protein-Tyrosine Kinases , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL