Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Acta Biomater ; 119: 268-283, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33127484

ABSTRACT

Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.


Subject(s)
Aorta, Thoracic , Femoral Artery , Adolescent , Adult , Aged , Aging , Biomechanical Phenomena , Compliance , Elastin , Humans , Middle Aged , Stress, Mechanical , Young Adult
3.
Acta Biomater ; 103: 172-188, 2020 02.
Article in English | MEDLINE | ID: mdl-31877371

ABSTRACT

Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.


Subject(s)
Aging/physiology , Aorta, Thoracic/anatomy & histology , Aorta, Thoracic/physiology , Adolescent , Adult , Aged , Biomechanical Phenomena , Elasticity , Female , Humans , Male , Middle Aged , Risk Factors , Stress, Mechanical , Young Adult
4.
Article in English | MEDLINE | ID: mdl-38013678

ABSTRACT

Alaska is at the forefront of climate change and subject to salient challenges including energy consumption. It is important to understand Alaskans' perceptions and opinions about energy consumption to solve Alaska's domestic energy problems and creating a sustainable future. However, it is challenging to collect public opinions about energy consumption using conventional survey methods, which are often expensive, labor-intensive, and slow. This study utilizes information-rich Twitter data to investigate Alaskans' perceptions and opinions on various energy sources and in particular clean energy sources. Using the geotagged Twitter data collected in Alaska from 2014 to 2016, a lexicon-based sentiment analysis approach was first applied to analyze the polarity in the expressed opinions. Further, a novel fuzzy-based theory is employed to derive the sentiment of the opinion in each tweet. The results indicate that there is a valuable growth rate for a set of energy-related keywords, such as "sun", "power", and "nuclear". The rank of top 20 renewable energy-related keywords shows the word "Tidal" has the highest ranking followed by "solar panel". Moreover, the attention to various types of energy is increasing dramatically among Alaskans. Importantly, Alaskans' attitudes toward energy and renewable energy changed positively from 2014 to 2016, indicating that Alaskans' energy choices are more acceptive towards or even favor renewable energy in the future.

SELECTION OF CITATIONS
SEARCH DETAIL