Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0277307, 2022.
Article in English | MEDLINE | ID: mdl-36395281

ABSTRACT

Cysteinyl leukotriene receptor 1 (CysLTR1) is a G protein-coupled receptor for the inflammatory lipid mediators cysteinyl leukotrienes, which are involved in smooth muscle constriction, vascular permeability, and macrophage chemokine release. The Cysltr1 gene encoding CysLTR1 is expressed in the macrophage lineage, including osteoclasts, and the CysLTR1 antagonist Montelukast has been shown to suppress the formation of osteoclasts. However, it currently remains unclear whether CysLTR1 is involved in osteoclast differentiation and bone loss. Therefore, to clarify the role of CysLTR1 in osteoclastogenesis and pathological bone loss, we herein generated CysLTR1 loss-of-function mutant mice by disrupting the cysltr1 gene using the CRISPR-Cas9 system. These mutant mice had a frameshift mutation resulting in a premature stop codon (Cysltr1 KO) or an in-frame mutation causing the deletion of the first extracellular loop (Cysltr1Δ105). Bone marrow macrophages (BMM) from these mutant mice lost the intracellular flux of calcium in response to leukotriene D4, indicating that these mutants completely lost the activity of CysLTR1 without triggering genetic compensation. However, disruption of the Cysltr1 gene did not suppress the formation of osteoclasts from BMM in vitro. We also demonstrated that the CysLTR1 antagonist Montelukast suppressed the formation of osteoclasts without functional CysLTR1. On the other hand, disruption of the Cysltr1 gene partially suppressed the formation of osteoclasts stimulated by leukotriene D4 and did not inhibit that by glutathione, functioning as a substrate in the synthesis of cysteinyl leukotrienes. Disruption of the Cysltr1 gene did not affect ovariectomy-induced osteoporosis or lipopolysaccharide-induced bone resorption. Collectively, these results suggest that the CysLT-CysLTR1 axis is dispensable for osteoclast differentiation in vitro and pathological bone loss, while the leukotriene D4-CysTR1 axis is sufficient to stimulate osteoclast formation. We concluded that the effects of glutathione and Montelukast on osteoclast formation were independent of CysLTR1.


Subject(s)
Bone Resorption , Osteoclasts , Female , Mice , Animals , Leukotriene D4/pharmacology , Bone Resorption/genetics , Bone Resorption/pathology , Leukotrienes , Glutathione/pharmacology
2.
Biochem Biophys Res Commun ; 566: 184-189, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34129966

ABSTRACT

The uncoupling protein 1 (UCP1) gene is known to be highly expressed in brown adipose tissue (BAT) that functions in thermogenesis. It has been shown that UCP1 mRNA is localized to the mouse adrenal gland, but its significance remains elusive. To explore how UCP1 expression in the adrenal gland is regulated, we generated a reporter knock-in mouse in which the GFP gene was inserted into the UCP1 locus using CRISPR-Cas9 system. Firstly, we confirmed by Western blot analysis UCP1-driven GFP protein expression in interscapular BAT of the knock-in mice kept at 4 °C. Immunohistochemistry showed that GFP protein was detected in the adrenal gland of the knock-in mice. More intense GFP expression was observed in the adrenal medulla than in the cortex of the reporter mice irrespectively of cold exposure. Immunohistochemistry using anti-UCP1 antibody, as well as Western blot analysis verified UCP1 protein expression in the wild-type adrenal medulla. These results suggest that the mouse adrenal gland is a novel organ expressing UCP1 protein and its expression is not upregulated by cold exposure.


Subject(s)
Adrenal Glands/metabolism , Thermogenesis , Uncoupling Protein 1/genetics , Animals , Female , Gene Expression , Mice, Inbred ICR , Up-Regulation
3.
PLoS One ; 15(10): e0240333, 2020.
Article in English | MEDLINE | ID: mdl-33057360

ABSTRACT

CRISPR/Cas9-mediated gene editing often generates founder generation (F0) mice that exhibit somatic mosaicism in the targeted gene(s). It has been known that Fibroblast growth factor 10 (Fgf10)-null mice exhibit limbless and lungless phenotypes, while intermediate limb phenotypes (variable defective limbs) are observed in the Fgf10-CRISPR F0 mice. However, how the lung phenotype in the Fgf10-mosaic mutants is related to the limb phenotype and genotype has not been investigated. In this study, we examined variable lung phenotypes in the Fgf10-targeted F0 mice to determine if the lung phenotype was correlated with percentage of functional Fgf10 genotypes. Firstly, according to a previous report, Fgf10-CRISPR F0 embryos on embryonic day 16.5 (E16.5) were classified into three types: type I, no limb; type II, limb defect; and type III, normal limbs. Cartilage and bone staining showed that limb truncations were observed in the girdle, (type I), stylopodial, or zeugopodial region (type II). Deep sequencing of the Fgf10-mutant genomes revealed that the mean proportion of codons that encode putative functional FGF10 was 8.3 ± 6.2% in type I, 25.3 ± 2.7% in type II, and 54.3 ± 9.5% in type III (mean ± standard error of the mean) mutants at E16.5. Histological studies showed that almost all lung lobes were absent in type I embryos. The accessory lung lobe was often absent in type II embryos with other lobes dysplastic. All lung lobes formed in type III embryos. The number of terminal tubules was significantly lower in type I and II embryos, but unchanged in type III embryos. To identify alveolar type 2 epithelial (AECII) cells, known to be reduced in the Fgf10-heterozygous mutant, immunostaining using anti-surfactant protein C (SPC) antibody was performed: In the E18.5 lungs, the number of AECII was correlated to the percentage of functional Fgf10 genotypes. These data suggest the Fgf10 gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. Since dysfunction of AECII cells has been implicated in the pathogenesis of parenchymal lung diseases, the Fgf10-CRISPR F0 mouse would present an ideal experimental system to explore it.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Fibroblast Growth Factor 10/genetics , Gene Editing/methods , Lung/metabolism , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Disease Models, Animal , Embryo, Mammalian/metabolism , Gene Dosage , Genotype , Lung/cytology , Lung/pathology , Lung Diseases/metabolism , Lung Diseases/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic
4.
Cell Tissue Res ; 379(1): 157-167, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31673758

ABSTRACT

REIC (reduced expression in immortalized cells) has been identified as a gene whose expression was reduced in immortalized cultured cells. The REIC gene is identical to Dickkopf-3 (Dkk3), which encodes a secreted glycoprotein belonging to the Dkk family. Previously, we showed that Dkk3 protein is present in the mouse adrenal medulla. However, its role in this tissue has not been elucidated. To explore it, we performed electron microscopic (EM) studies and RNA-sequencing (RNA-seq) analysis on Dkk3-null adrenal glands. EM studies showed that the number of dense core secretory vesicles were significantly reduced and empty vesicles were increased in the medulla endocrine cells. Quantitative PCR (qPCR) analysis showed relative expression levels of chromogranin A (Chga) and neuropeptide Y (Npy) were slightly but significantly reduced in the Dkk3-null adrenal glands. From the result of RNA-seq analysis as a parallel study, we selected three of the downregulated genes, uncoupled protein-1 (Ucp1), growth arrest and DNA-damage-inducible 45 gamma (Gadd45g), and Junb with regard to the estimated expression levels. In situ hybridization confirmed that these genes were regionally expressed in the adrenal gland. However, expression levels of these three genes were not consistent as revealed by qPCR. Thus, Dkk3 maintains the integrity of secreting vesicles in mouse adrenal medulla by regulating the expression of Chga and Npy.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Adrenal Medulla/physiology , Secretory Vesicles/physiology , Adaptor Proteins, Signal Transducing/genetics , Adrenal Medulla/cytology , Adrenal Medulla/ultrastructure , Animals , Chromogranin A/metabolism , Down-Regulation , Female , In Situ Hybridization , Mice , Mice, Knockout , Neuropeptide Y/metabolism , RNA, Messenger , RNA-Seq , Secretory Vesicles/ultrastructure , Transcriptome
5.
Biochem Biophys Rep ; 19: 100665, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31463372

ABSTRACT

Recent studies show that exposure to ultraviolet (UV) light suppresses ocular elongation, which causes myopia development. However, the specific mechanisms of this process have not been elucidated. A UV-sensor, Opsin 5 (Opn5) mRNA was shown to be present in extraretinal tissues. To test the possibility that UV-signals mediated by Opn5 would have a direct effect on the outer connective tissues of the eye, we first examined the expression patterns of a mammalian type Opn5 (Opn5m) in the late-embryonic chicken eye. Quantitative PCR showed Opn5m mRNA expression in the cornea and sclera. The anti-Opn5m antibody stained a small subset of cells in the corneal stroma and fibrous sclera. We next assessed the effect of UV-A (375 nm) irradiation on the chicken fibroblast cell line DF-1 overexpressing chicken Opn5m. UV-A irradiation for 30 min significantly increased the expression of Early growth response 1 (Egr1), known as an immediate early responsive gene, and of Matrix metalloproteinase 2 (Mmp2) in the presence of retinal chromophore 11-cis-retinal. In contrast, expression of Transforming growth factor beta 2 and Tissue inhibitor of metalloproteinase 2 was not significantly altered. These results indicate that UV-A absorption by Opn5m can upregulate the expression levels of Egr1 and Mmp2 in non-neuronal, fibroblasts. Taken together with the presence of Opn5m in the cornea and sclera, it is suggested that UV-A signaling mediated by Opn5 in the extraretinal ocular tissues could influence directly the outer connective tissues of the chicken late-embryonic eye.

6.
Congenit Anom (Kyoto) ; 59(3): 56-73, 2019 May.
Article in English | MEDLINE | ID: mdl-30039880

ABSTRACT

The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.


Subject(s)
Anophthalmos/genetics , Coloboma/genetics , Eye Abnormalities/genetics , Eye Proteins/genetics , Holoprosencephaly/genetics , Microphthalmos/genetics , Mosaicism , Animals , Anophthalmos/diagnosis , Anophthalmos/pathology , Coloboma/diagnosis , Coloboma/pathology , Eye Abnormalities/diagnosis , Eye Abnormalities/pathology , Eye Proteins/classification , Gene Editing , Gene Expression Regulation, Developmental , Genetic Loci , Genome, Human , High-Throughput Nucleotide Sequencing , Holoprosencephaly/diagnosis , Holoprosencephaly/pathology , Humans , Microphthalmos/diagnosis , Microphthalmos/pathology , PAX6 Transcription Factor/genetics , Phenotype
7.
Sci Rep ; 7(1): 53, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28246397

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a rapid gene-targeting technology that does not require embryonic stem cells. To demonstrate dosage effects of the Pax6 gene on eye formation, we generated Pax6-deficient mice with the CRISPR/Cas system. Eyes of founder embryos at embryonic day (E) 16.5 were examined and categorized according to macroscopic phenotype as class 1 (small eye with distinct pigmentation), class 2 (pigmentation without eye globes), or class 3 (no pigmentation and no eyes). Histologically, class 1 eyes were abnormally small in size with lens still attached to the cornea at E16.5. Class 2 eyes had no lens and distorted convoluted retinas. Class 3 eyes had only rudimentary optic vesicle-like tissues or histological anophthalmia. Genotyping of neck tissue cells from the founder embryos revealed somatic mosaicism and allelic complexity for Pax6. Relationships between eye phenotype and genotype were developed. The present results demonstrated that development of the lens from the surface ectoderm requires a higher gene dose of Pax6 than development of the retina from the optic vesicle. We further anticipate that mice with somatic mosaicism in a targeted gene generated by CRISPR/Cas-mediated genome editing will give some insights for understanding the complexity in human congenital diseases that occur in mosaic form.


Subject(s)
CRISPR-Cas Systems , Eye Proteins/genetics , Gene Dosage , Lens, Crystalline/abnormalities , Mosaicism , PAX6 Transcription Factor/genetics , Animals , Ectoderm , Embryo, Mammalian , Gene Editing , Homeodomain Proteins , Lens, Crystalline/embryology , Mice, Transgenic , Microphthalmos/embryology , Microphthalmos/genetics , Phenotype , Retinal Dysplasia/embryology , Retinal Dysplasia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...