Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(7): e0199969, 2018.
Article in English | MEDLINE | ID: mdl-30020947

ABSTRACT

INTRODUCTION: Green tea extract has anti-inflammatory and antioxidant effects which improve dyslipidemia and decrease adipose tissue depots associated with hyperlipidic diet consumption. OBJECTIVE: To evaluate the effect of green tea extract consumption by rats during pregnancy and lactation on the metabolism of their offspring that received control or high-fat diet with water during 10 weeks after weaning. METHODS: Wistar rats received water (W) or green tea extract diluted in water (G) (400 mg/kg body weight/day), and control diet (10 animals in W and G groups) during pregnancy and lactation. After weaning, offspring received water and a control (CW) or a high-fat diet (HW), for 10 weeks. One week before the end of treatment, oral glucose tolerance test was performed. The animals were euthanized and the samples were collected for biochemical, hormonal and antioxidant enzymes activity analyses. In addition, IL-10, TNF-α, IL-6, and IL-1ß were quantified by ELISA while p-NF-κBp50 was analyzed by Western Blotting. Repeated Measures ANOVA, followed by Tukey's test were used to find differences between data (p < 0.05). RESULTS: The consumption of high-fat diet by rats for 10 weeks after weaning promoted hyperglycemia and hyperinsulinemia, and increased fat depots. The ingestion of a high-fat diet by the offspring of mothers who consumed green tea extract during pregnancy and lactation decreased the inflammatory cytokines in adipose tissue, while the ingestion of a control diet increased the same cytokines. CONCLUSION: Our results demonstrate that prenatal consumption of green tea associated with consumption of high-fat diet by offspring after weaning prevented inflammation. However, maternal consumption of the green tea extract induced a proinflammatory status in the adipose tissue of the adult offspring that received the control diet after weaning.


Subject(s)
Lactation , Maternal Nutritional Physiological Phenomena , Metabolism/drug effects , Plant Extracts/pharmacology , Tea/chemistry , Animals , Antioxidants/metabolism , Blood Chemical Analysis , Body Weight/drug effects , Cytokines/metabolism , Diet, High-Fat/adverse effects , Female , Glucose Tolerance Test , Liver/drug effects , Liver/enzymology , Liver/metabolism , NF-kappa B p50 Subunit/metabolism , Organ Size/drug effects , Pregnancy , Rats , Rats, Wistar
2.
J Nutr Biochem ; 25(10): 1084-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25086779

ABSTRACT

To investigate possible mechanisms of green tea's anti-obesity and anti-diabetic effects in the hypothalamus, the central regulator of metabolism, of mice fed with high-fat diet (HFD), we analyzed proteins of the toll-like receptor 4 (TLR4) pathway and serotoninergic proteins involved in energy homeostasis. Thirty-day-old male Swiss mice were fed with HFD rich in saturated fat and green tea extract (GTE) for 8 weeks. After that, body weight and mass of fat depots were evaluated. Oral glucose tolerance test was performed 3 days prior to euthanasia; serum glucose, insulin and adiponectin were measured in fasted mice. Hypothalamic TLR4 pathway proteins, serotonin receptors 1B and 2C and serotonin transporter were analyzed by Western blotting or enzyme-linked immunosorbent assay. A second set of animals was used to measure food intake in response to fluoxetine, a selective serotonin reuptake inhibitor. Mice fed with HFD had increased body weight and mass of fat depots, impaired oral glucose tolerance, elevated glucose and insulin and decreased adiponectin serum levels. TLR4, IκB-α, nuclear factor κB p50 and interleukin 6 were increased by HFD. Concomitant GTE treatment ameliorated these parameters. The serotoninergic system remained functional after HFD treatment despite a few alterations in protein content of serotonin receptors 1B and 2C and serotonin transporter. In summary, the GTE attenuated the deleterious effects of the HFD investigated in this study, partially due to reduced hypothalamic inflammation.


Subject(s)
Diet, High-Fat/adverse effects , Hypothalamus/drug effects , Inflammation/drug therapy , Plant Extracts/pharmacology , Tea/chemistry , Adiponectin/blood , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Cholesterol/blood , Enzyme-Linked Immunosorbent Assay , Fasting , Glucose Tolerance Test , Hypothalamus/metabolism , Hypothalamus/pathology , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Inflammation/pathology , Insulin/blood , Interleukin-6/blood , Male , Mice , NF-KappaB Inhibitor alpha , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL