Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 98(1): 169-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25465542

ABSTRACT

The main objective of this study was to evaluate the relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of dairy cows. Holstein cows (n=72) were milked twice daily and housed and fed individually in tiestalls. All animals were synchronized and flushed at 70±3 d in milk (DIM), near peak production (39.6kg/d). Blood samples for AMH analysis were collected at 3 different stages of a synchronized estrous cycle [at a random stage (40±3 DIM), proestrus (50±3 DIM), and diestrus (57±3 DIM)]. Body weights were measured weekly from calving until embryo collection. Statistical analyses were performed with Proc CORR and Proc GLIMMIX of SAS (SAS Institute Inc., Cary, NC). The 3 AMH samples from individual cows were correlated and not influenced by day of cycle. Surprisingly, AMH tended to be negatively correlated with body weight loss from calving to embryo collection (r=-0.22). More importantly, average AMH was highly associated (r=0.65) with superovulation response (number of corpora lutea on the day of the flush, CLN), total structures collected (r=0.48), and total transferable embryos (r=0.37), but not percentage of fertilized embryos (r=-0.20) or degenerate embryos (r=0.02). When cows were classified into quartiles (Q) of circulating AMH (Q1=0.01 to 82.6pg/mL; Q2=91.1 to 132.5pg/mL; Q3=135.3 to 183.8pg/mL; Q4=184.4 to 374.3pg/mL), we observed a >2-fold difference between first and fourth AMH quartiles in superovulation response (CLN: Q1=12.0±1.5; Q2=14.7±2.0; Q3=17.2±1.2; Q4=25.6±1.5) and embryo production. In conclusion, circulating AMH concentration was strongly associated with superovulation response, and evaluation of AMH could be used to identify cows with greater responses to superstimulation and thus improve efficiency of superovulation programs in dairy cows.


Subject(s)
Anti-Mullerian Hormone/blood , Cattle/physiology , Superovulation/physiology , Animals , Embryo Transfer/veterinary , Estrous Cycle/physiology , Female
2.
J Dairy Sci ; 97(6): 3666-83, 2014.
Article in English | MEDLINE | ID: mdl-24731646

ABSTRACT

The relationship between energy status and fertility in dairy cattle was retrospectively analyzed by comparing fertility with body condition score (BCS) near artificial insemination (AI; experiment 1), early postpartum changes in BCS (experiment 2), and postpartum changes in body weight (BW; experiment 3). To reduce the effect of cyclicity status, all cows were synchronized with Double-Ovsynch protocol before timed AI. In experiment 1, BCS of lactating dairy cows (n = 1,103) was evaluated near AI. Most cows (93%) were cycling at initiation of the breeding Ovsynch protocol (first GnRH injection). A lower percentage pregnant to AI (P/AI) was found in cows with lower (≤ 2.50) versus higher (≥ 2.75) BCS (40.4 vs. 49.2%). In experiment 2, lactating dairy cows on 2 commercial dairies (n = 1,887) were divided by BCS change from calving until the third week postpartum. Overall, P/AI at 70-d pregnancy diagnosis differed dramatically by BCS change and was least for cows that lost BCS, intermediate for cows that maintained BCS, and greatest for cows that gained BCS [22.8% (180/789), 36.0% (243/675), and 78.3% (331/423), respectively]. Surprisingly, a difference existed between farms with BCS change dramatically affecting P/AI on one farm and no effect on the other farm. In experiment 3, lactating dairy cows (n = 71) had BW measured weekly from the first to ninth week postpartum and then had superovulation induced using a modified Double-Ovsynch protocol. Cows were divided into quartiles (Q) by percentage of BW change (Q1 = least change; Q4 = most change) from calving until the third week postpartum. No effect was detected of quartile on number of ovulations, total embryos collected, or percentage of oocytes that were fertilized; however, the percentage of fertilized oocytes that were transferable embryos was greater for cows in Q1, Q2, and Q3 than Q4 (83.8, 75.2, 82.6, and 53.2%, respectively). In addition, percentage of degenerated embryos was least for cows in Q1, Q2, and Q3 and greatest for Q4 (9.6, 14.5, 12.6, and 35.2% respectively). In conclusion, for cows synchronized with a Double-Ovsynch protocol, an effect of low BCS (≤ 2.50) near AI on fertility was detected, but change in BCS during the first 3 wk postpartum had a more profound effect on P/AI to first timed AI. This effect could be partially explained by the reduction in embryo quality and increase in degenerate embryos byd 7 after AI in cows that lost more BW from the first to third week postpartum.


Subject(s)
Body Composition , Cattle/physiology , Fertility , Ovulation , Postpartum Period , Animals , Body Weight , Embryo Transfer/veterinary , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Insemination, Artificial/veterinary , Lactation , Retrospective Studies
3.
J Dairy Sci ; 97(2): 764-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24359829

ABSTRACT

Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 µU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered to optimize success of ovarian superstimulatory protocols.


Subject(s)
Cattle/physiology , Fertilization/drug effects , Follicle Stimulating Hormone/pharmacology , Food Deprivation , Luteinizing Hormone/pharmacology , Ovarian Follicle/physiology , Ovulation/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Female , Lactation , Oocytes/physiology , Random Allocation
4.
J Dairy Sci ; 97(2): 754-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24359832

ABSTRACT

The objective of this trial was to evaluate the effects of feed restriction (FR) on serum glucose, nonesterified fatty acids, progesterone (P4), insulin, and milk production in dairy cows. Eight multiparous Holstein cows, 114 ± 14 d pregnant and 685 ± 39 kg of body weight, were randomly assigned to a replicated 4 × 4 Latin square design with 14-d periods. During the first 8 d of each period, cows in all treatments were fed for ad libitum feed intake. Beginning on d 9 of each period, cows received 1 of 4 treatments: ad libitum (AL), 25% feed restriction (25 FR), 50% feed restriction (50 FR), and 50% of TMR replaced with wheat straw (50 ST). Daily feed allowance was divided into 3 equal portions allocated every 8h with jugular blood samples collected immediately before each feeding through d 14. In addition, on d 12 of each period, blood samples were collected before and at 60, 120, 180, 240, 300, 360, 420, and 480 min after morning feeding. The conventional total mixed ration and total mixed ration with straw averaged 15.1 and 10.8%, 32.1 and 50.5%, and 26.8 and 17.0% for concentrations of crude protein, neutral detergent fiber, and starch, respectively. Cows that were feed and energy restricted had reduced dry matter intake, net energy for lactation intake, circulating glucose concentrations, and milk production, but greater body weight and body condition score losses than AL cows. Circulating concentrations of insulin were lower for cows fed 50 FR (8.27 µIU/mL) and 50 ST (6.24 µIU/mL) compared with cows fed AL (16.65 µIU/mL) and 25 FR (11.16 µIU/mL). Furthermore, the greatest plasma nonesterified fatty acids concentration was observed for 50 ST (647.7 µ Eq/L), followed by 50 FR (357.5 µEq/L), 25 FR (225.3 µEq/L), and AL (156.3 µEq/L). In addition, serum P4 concentration was lower for cows fed AL than cows fed 50 ST and 25 FR. Thus, FR reduced circulating glucose and insulin but increased P4 concentration, changes that may be positive in reproductive management programs.


Subject(s)
Caloric Restriction/veterinary , Cattle/physiology , Dairying/methods , Insulin/blood , Progesterone/blood , Animal Feed/analysis , Animals , Blood Glucose/analysis , Diet/veterinary , Fatty Acids, Nonesterified/blood , Female , Lactation , Milk/metabolism
5.
Theriogenology ; 80(9): 1074-81, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24084230

ABSTRACT

The primary objective of this study was to determine the effect of site of semen deposition on fertilization rate and embryo quality in superovulated cows. The hypothesis was that deposition of semen into the uterine horns would increase the fertilization rate compared with deposition of semen into the uterine body. The secondary objective was to evaluate the effect of uterine environment on fertilization rate and embryo quality. It was hypothesized that subclinical endometritis at the onset of superstimulation would decrease the fertilization rates and embryo quality. In experiment 1, 17 superovulated heifers were randomly assigned to receive artificial insemination (AI) into the uterine body or uterine horns. The total number of fertilized structures and fertilization rate from superovulated heifers was increased (P = 0.04 and P = 0.02, respectively) when semen was deposited into the uterine horns compared with the uterine body. Other embryo characteristics did not differ based on the site of semen deposition. In experiment 2, 14 lactating dairy cows were superovulated twice and were randomly assigned to receive AI into the uterine body or deep into the uterine horns using a crossover design. Neither fertilization rate nor any other embryo characteristics were improved when semen was placed deep into the uterine horns compared with the uterine body. In experiment 3, 72 superovulated lactating dairy cows were randomly assigned to receive AI into the uterine body or uterine horns. Before initiation of superstimulatory treatments, an endometrial cytology sample was collected from each cow. Ova/embryos were collected by a nonsurgical technique at 70 ± 3 days in milk. Similar to experiment 2, neither fertilization rate nor any other embryo characteristics differed based on the site of semen deposition in experiment 3. The percentage of cows with subclinical endometritis did not differ between treatments. Interestingly, there was a tendency (P = 0.09) for a reduction in embryo recovery rate and a reduction (P = 0.01) in the fertilization rate for cows with subclinical endometritis. In conclusion, deposition of semen into the uterine horns rather than into the uterine body did not improve the fertilization rate or embryo quality in superovulated cows. Subclinical endometritis decreased the fertilization rate in superovulated cows.


Subject(s)
Cattle/physiology , Fertilization/physiology , Insemination, Artificial/veterinary , Superovulation , Animals , Embryonic Development , Female , Insemination, Artificial/methods , Uterus/embryology
6.
J Anim Sci ; 88(12): 3856-70, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20817861

ABSTRACT

This study evaluated potential effects of organic trace mineral supplementation on reproductive measures in lactating dairy cows. Cows were blocked by breed and randomly assigned at dry-off to receive inorganic trace mineral supplementation (control; n = 32) or to have a portion of supplemental inorganic Zn, Cu, Mn, and Co replaced with an equivalent amount of the organic forms of these minerals (treatment; n = 31). Trace minerals were provided through control or treatment premixes fed at 100 g·cow(-1)·d(-1). Premixes were fed to dry cows (range = 40 to 72 d before calving) in 1.8 kg·cow(-1)·d(-1) concentrate pellets through a computer feeder to provide 40, 26, 70, and 100% of supplemented Zn, Mn, Cu, and Co, respectively, and to lactating cows (range = 69 to 116 d after calving) in a total mixed ration to provide 22, 14, 40, and 100% of supplemented Zn, Mn, Cu, and Co, respectively. Treatment increased milk production at wk 14 (P = 0.047) postcalving, milk urea N content (P = 0.039), and BW loss from calving to 1 mo postcalving (P = 0.040), and decreased milk fat percentage (P = 0.045) and BCS (P = 0.048). Treatment tended to increase milk production at wk 13 (P = 0.089) postcalving and endometrial tissue concentrations of Fe (P = 0.070), BW at mo 1 (P = 0.056), and milk protein percentage (P = 0.064). Treatment did not affect (P > 0.1) DMI, health events, first-wave follicular dynamics, first cycle luteal measures, embryo quality, liver trace mineral concentrations, or luteal trace mineral concentrations. Cows with a rectal temperature ≥39°C at the time of AI had a smaller percentage of fertilized entities (P < 0.001). However, of the entities that were fertilized, the percentage of viable embryos, embryo quality, accessory sperm number, and embryo cell number were not affected (P > 0.1) by treatment. We conclude that replacing a portion of inorganic supplemental trace minerals with an equivalent amount of these organic trace minerals (Zn, Mn, Cu, and Co) increased milk production in mid-lactation, but did not affect postpartum follicular dynamics, embryo quality, or liver and luteal trace mineral concentrations.


Subject(s)
Cattle/physiology , Embryo, Mammalian/drug effects , Lactation/drug effects , Metals/administration & dosage , Minerals/analysis , Ovarian Follicle/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cobalt/administration & dosage , Cobalt/pharmacology , Copper/administration & dosage , Copper/pharmacology , Dairying , Diet/veterinary , Dietary Supplements , Estrus Synchronization , Female , Manganese/administration & dosage , Manganese/pharmacology , Metals/pharmacology , Milk , Postpartum Period , Zinc/administration & dosage , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL