Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3756, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704381

ABSTRACT

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Subject(s)
Fallopian Tubes , Gonorrhea , Inflammation , Interleukin-17 , Neisseria gonorrhoeae , Adult , Female , Humans , Cytokines/metabolism , Epithelium/pathology , Epithelium/microbiology , Fallopian Tubes/microbiology , Fallopian Tubes/pathology , Fallopian Tubes/immunology , Gonorrhea/immunology , Gonorrhea/microbiology , Gonorrhea/pathology , Inflammation/pathology , Inflammation/microbiology , Interleukin-17/metabolism , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/pathogenicity , Pelvic Inflammatory Disease/microbiology , Pelvic Inflammatory Disease/pathology , Pelvic Inflammatory Disease/immunology , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics
2.
Infect Immun ; 92(5): e0000424, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38563734

ABSTRACT

Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.


Subject(s)
Neisseria , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Humans , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins , Neisseria/genetics , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism
3.
J Bacteriol ; 205(12): e0027723, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38038461

ABSTRACT

IMPORTANCE: Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.


Subject(s)
Neisseria gonorrhoeae , Peptidoglycan , Humans , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Peptidoglycan/metabolism , Mutation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Cell Wall/metabolism
4.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662418

ABSTRACT

Infection with the Gram-negative species Neisseria gonorrhoeae leads to inflammation that is responsible for the disease symptoms of gonococcal urethritis, cervicitis, and pelvic inflammatory disease. During growth these bacteria release significant amounts of peptidoglycan (PG) fragments which elicit inflammatory responses in the human host. To better understand the mechanisms involved in PG synthesis and breakdown in N. gonorrhoeae, we characterized the effects of mutation of mltG. MltG has been identified in other bacterial species as a terminase that stops PG strand growth by cleaving the growing glycan. Mutation of mltG in N. gonorrhoeae did not affect bacterial growth rate but resulted in increased PG turnover, more cells of large size, decreased autolysis under non-growth conditions, and increased sensitivity to antibiotics that affect PG crosslinking. An mltG mutant released greatly increased amounts of PG monomers, PG dimers, and larger oligomers. In the mltG background, mutation of either ltgA or ltgD, encoding the lytic transglycosylases responsible for PG monomer liberation, resulted in wild-type levels of PG monomer release. Bacterial two-hybrid assays identified positive interactions of MltG with synthetic penicillin-binding proteins PBP1 and PBP2 and the PG-degrading endopeptidase PBP4 (PbpG). These data are consistent with MltG acting as a terminase in N. gonorrhoeae and suggest that absence of MltG activity results in excessive PG growth and extra PG in the sacculus that must be degraded by lytic transglycosylases including LtgA and LtgD. Furthermore, absence of MltG causes a cell wall defect that is manifested as large cell size and antibiotic sensitivity.

5.
Infect Immun ; 90(3): e0048521, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35225652

ABSTRACT

The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In the present study, we demonstrated that N. meningitidis released more PG-derived peptides than PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. The generation of such peptides required the presence of the periplasmic N-acetylmuramyl-l-alanine amidase AmiC and the outer membrane lipoprotein NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly tagged AmiC was found at the septum in some diplococci but was distributed around the cell in most cases. In a human whole-blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis, the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and survival during infection of human blood.


Subject(s)
Bacterial Proteins , Lipoproteins , Neisseria meningitidis , Nod1 Signaling Adaptor Protein , Peptidoglycan , Bacterial Proteins/metabolism , Cell Separation , Cell Wall/metabolism , Humans , Lipoproteins/metabolism , Meningococcal Infections/metabolism , Meningococcal Infections/microbiology , Neisseria meningitidis/metabolism , Nod1 Signaling Adaptor Protein/agonists , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Peptidoglycan/metabolism
6.
Front Microbiol ; 12: 784483, 2021.
Article in English | MEDLINE | ID: mdl-34975804

ABSTRACT

Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.

7.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30510100

ABSTRACT

Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.


Subject(s)
Neisseria gonorrhoeae/pathogenicity , Nod1 Signaling Adaptor Protein/physiology , Penicillin-Binding Proteins/physiology , Peptide Fragments/metabolism , Peptidoglycan/metabolism , Cell Wall/metabolism , Endopeptidases/metabolism , Glycosyltransferases/metabolism , Humans , Neisseria gonorrhoeae/genetics , Nod1 Signaling Adaptor Protein/metabolism , Penicillin-Binding Proteins/genetics , Signal Transduction/physiology
8.
mBio ; 8(5)2017 10 17.
Article in English | MEDLINE | ID: mdl-29042497

ABSTRACT

Neisseria gonorrhoeae gonococcus (GC) is a Gram-negative betaproteobacterium and causative agent of the sexually transmitted infection gonorrhea. During growth, GC releases lipooligosaccharide (LOS) and peptidoglycan (PG) fragments, which contribute significantly to the inflammatory damage observed during human infection. In ascending infection of human Fallopian tubes, inflammation leads to increased risk of ectopic pregnancy, pelvic inflammatory disease, and sterility. Of the PG fragments released by GC, most are disaccharide peptide monomers, and of those, 80% have tripeptide stems despite the observation that tetrapeptide stems make up 80% of the assembled cell wall. We identified a serine-protease l,d-carboxypeptidase, NGO1274 (LdcA), as the enzyme responsible for converting cell wall tetrapeptide-stem PG to released tripeptide-stem PG. Unlike characterized cytoplasmic LdcA homologs in gammaproteobacteria, LdcA in GC is exported to the periplasm, and its localization is critical for its activity in modifying PG fragments for release. Distinct among other characterized l,d-carboxypeptidases, LdcA from GC is also capable of catalyzing the cleavage of specific peptide cross-bridges (endopeptidase activity). To define the role of ldcA in pathogenesis, we demonstrate that ldcA disruption results in both loss of NOD1-dependent NF-κB activation and decreased NOD2-dependent NF-κB activation while not affecting Toll-like receptor (TLR) agonist release. Since the human intracellular peptidoglycan receptor NOD1 (hNOD1) specifically recognizes PG fragments with a terminal meso-DAP rather than d-alanine, we conclude that LdcA is required for GC to provoke NOD1-dependent responses in cells of the human host.IMPORTANCE The macromolecular meshwork of peptidoglycan serves essential functions in determining bacterial cell shape, protecting against osmotic lysis, and defending cells from external assaults. The conserved peptidoglycan structure, however, is also recognized by eukaryotic pattern recognition receptors, which can trigger immune responses against bacteria. Many bacteria can induce an inflammatory response through the intracellular peptidoglycan receptor NOD1, but Neisseria gonorrhoeae serves as an extreme example, releasing fragments of peptidoglycan into the environment during growth that specifically antagonize human NOD1. Understanding the peptidoglycan breakdown mechanisms that allow Neisseria to promote NOD1 activation, rather than avoiding or suppressing immune detection, is critical to understanding the pathogenesis of this increasingly drug-resistant organism. We identify a peptidoglycan l,d-carboxypeptidase responsible for converting liberated peptidoglycan fragments into the human NOD1 agonist and find that the same enzyme has endopeptidase activity on certain peptidoglycan cross-links, the first described combination of those two activities in a single enzyme.


Subject(s)
Carboxypeptidases/metabolism , Neisseria gonorrhoeae/enzymology , Peptidoglycan/metabolism , Serine Proteases/metabolism , Carboxypeptidases/genetics , Cell Line , Host-Pathogen Interactions , Humans , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/pathogenicity , Nod1 Signaling Adaptor Protein/metabolism , Serine Proteases/genetics
9.
ACS Infect Dis ; 3(9): 624-633, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28585815

ABSTRACT

Neisseria gonorrhoeae releases anhydro peptidoglycan monomers during growth through the action of two lytic transglycosylases encoded in the N. gonorrhoeae genome, LtgA and LtgD. Because peptidoglycan and peptidoglycan components activate innate immune signaling, we hypothesized that the activity of LtgA and LtgD would influence the host responses to gonococcal infection. N. gonorrhoeae lacking LtgA and LtgD caused increased host production of inflammatory cytokines IL-1ß and TNF-α. Culture supernatants from ΔltgA/ΔltgD N. gonorrhoeae contain more shed outer membrane-associated proteins and multimeric peptidoglycan fragments rather than monomers. These culture supernatants were more potent activators of host TLR2 and NOD2 signaling when compared to supernatants from the isogenic parental N. gonorrhoeae strain. Purified peptidoglycan monomers containing anhydro muramic acid produced by LtgA were poor stimulators of NOD2, whereas peptidoglycan monomers containing reducing muramic acid produced by host lysozyme were potent stimulators of NOD2. These data indicate that LtgA and LtgD reduce recognition of N. gonorrhoeae by TLR2 and NOD2.


Subject(s)
Glycosyltransferases/metabolism , Immunity, Innate , Neisseria gonorrhoeae/growth & development , Nod2 Signaling Adaptor Protein/metabolism , Toll-Like Receptor 2/metabolism , Bacterial Proteins/metabolism , Cytokines/metabolism , Humans , Muramic Acids/metabolism , Neisseria gonorrhoeae/enzymology , Peptidoglycan/immunology , Peptidoglycan/metabolism , Signal Transduction , THP-1 Cells
10.
Cell Microbiol ; 19(3)2017 03.
Article in English | MEDLINE | ID: mdl-27597434

ABSTRACT

Symptomatic infection by Neisseria gonorrhoeae (Gc) produces a potent inflammatory response, resulting in a neutrophil-rich exudate. A population of Gc can survive the killing activities of neutrophils for reasons not completely understood. Unlike other Gram-negative bacteria, Gc releases monomeric peptidoglycan (PG) extracellularly, dependent on two nonessential, nonredundant lytic transglycosylases (LTs), LtgA and LtgD. PG released by LtgA and LtgD can stimulate host immune responses. We report that ΔltgAΔltgD Gc were decreased in survival in the presence of primary human neutrophils but otherwise grew equally to wild-type Gc. Adding PG monomer failed to alter ΔltgAΔltgD Gc survival. Thus, LTs protect Gc from neutrophils independently of monomer release. We found two reasons to explain decreased survival of the double LT mutant. First, ΔltgAΔltgD Gc was more sensitive to the neutrophil antimicrobial proteins lysozyme and neutrophil elastase, but not others. Sensitivity to lysozyme correlated with decreased Gc envelope integrity. Second, exposure of neutrophils to ΔltgAΔltgD Gc increased the release of neutrophil granule contents extracellularly and into Gc phagosomes. We conclude that LtgA and LtgD protect Gc from neutrophils by contributing to envelope integrity and limiting bacterial exposure to select granule-localized antimicrobial proteins. These observations are the first to link bacterial degradation by lysozyme to increased neutrophil activation.


Subject(s)
Anti-Infective Agents/metabolism , Microbial Viability , Muramidase/metabolism , Neisseria gonorrhoeae/enzymology , Neutrophils/immunology , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Gene Deletion , Humans , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/physiology , Peptidoglycan Glycosyltransferase/genetics
11.
J Biol Chem ; 291(20): 10916-33, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26984407

ABSTRACT

The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release.


Subject(s)
Bacterial Proteins/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Neisseria gonorrhoeae/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain/genetics , Cations, Divalent/metabolism , Enzyme Activation , Humans , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/genetics , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/pathogenicity , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Protein Interaction Domains and Motifs , Substrate Specificity
12.
mBio ; 6(5): e01193-15, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26463160

ABSTRACT

UNLABELLED: Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. IMPORTANCE: Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host's epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont.


Subject(s)
Acute-Phase Proteins/chemistry , Acute-Phase Proteins/metabolism , Aliivibrio fischeri/physiology , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Decapodiformes/growth & development , Decapodiformes/microbiology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Symbiosis , Acute-Phase Proteins/genetics , Aliivibrio fischeri/chemistry , Animals , Carrier Proteins/genetics , Decapodiformes/physiology , Francisella tularensis/chemistry , Gene Expression Profiling , Lipopolysaccharides/metabolism , Membrane Glycoproteins/genetics , Neisseria meningitidis/chemistry , Protein Binding , Transcription, Genetic
13.
Mol Microbiol ; 97(6): 1168-85, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26076069

ABSTRACT

Gonococci secrete chromosomal DNA into the extracellular environment using a type IV secretion system (T4SS). The secreted DNA acts in natural transformation and initiates biofilm development. Although the DNA and its effects are detectable, structural components of the T4SS are present at very low levels, suggestive of uncharacterized regulatory control. We sought to better characterize the expression and regulation of T4SS genes and found that the four operons containing T4SS genes are transcribed at very different levels. Increasing transcription of two of the operons through targeted promoter mutagenesis did not increase DNA secretion. The stability and steady-state levels of two T4SS structural proteins were affected by a homolog of tail-specific protease. An RNA switch was also identified that regulates translation of a third T4SS operon. The switch mechanism relies on two putative stem-loop structures contained within the 5' untranslated region of the transcript, one of which occludes the ribosome binding site and start codon. Mutational analysis of these stem loops supports a model in which induction of an alternative structure relieves repression. Taken together, these results identify multiple layers of regulation, including transcriptional, translational and post-translational mechanisms controlling T4SS gene expression and DNA secretion.


Subject(s)
DNA, Intergenic , Gene Expression Regulation, Bacterial , Mutagenesis , Neisseria gonorrhoeae/genetics , Type IV Secretion Systems/metabolism , 5' Untranslated Regions , Bacterial Proteins/metabolism , DNA/metabolism , Endopeptidases/metabolism , Genetic Loci , Neisseria gonorrhoeae/metabolism , Promoter Regions, Genetic , Proteolysis , Type IV Secretion Systems/genetics
14.
J Bacteriol ; 196(16): 2954-68, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24914183

ABSTRACT

Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.


Subject(s)
Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Secretion Systems , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Blotting, Western , DNA, Bacterial/metabolism , Gene Deletion , Gene Expression , Microscopy, Immunoelectron , Protein Transport
15.
Infect Immun ; 81(9): 3490-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836824

ABSTRACT

Neisseria meningitidis (meningococcus) is a symbiont of the human nasopharynx. On occasion, meningococci disseminate from the nasopharynx to cause invasive disease. Previous work showed that purified meningococcal peptidoglycan (PG) stimulates human Nod1, which leads to activation of NF-κB and production of inflammatory cytokines. No studies have determined if meningococci release PG or activate Nod1 during infection. The closely related pathogen Neisseria gonorrhoeae releases PG fragments during normal growth. These fragments induce inflammatory cytokine production and ciliated cell death in human fallopian tubes. We determined that meningococci also release PG fragments during growth, including fragments known to induce inflammation. We found that N. meningitidis recycles PG fragments via the selective permease AmpG and that meningococcal PG recycling is more efficient than gonococcal PG recycling. Comparison of PG fragment release from N. meningitidis and N. gonorrhoeae showed that meningococci release less of the proinflammatory PG monomers than gonococci and degrade PG to smaller fragments. The decreased release of PG monomers by N. meningitidis relative to N. gonorrhoeae is partly due to ampG, since replacement of gonococcal ampG with the meningococcal allele reduced PG monomer release. Released PG fragments in meningococcal supernatants induced significantly less Nod1-dependent NF-κB activity than released fragments in gonococcal supernatants and tended to induce less interleukin-8 (IL-8) secretion in primary human fallopian tube explants. These results support a model in which efficient PG recycling and extensive degradation of PG fragments lessen inflammatory responses and may be advantageous for maintaining meningococcal carriage in the nasopharynx.


Subject(s)
Meningitis, Meningococcal/microbiology , Nasopharynx/microbiology , Neisseria meningitidis/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/metabolism , Cell Line , Fallopian Tubes/metabolism , Fallopian Tubes/microbiology , Female , HEK293 Cells , Humans , Inflammation/metabolism , Inflammation/microbiology , Interleukin-8/metabolism , Membrane Transport Proteins/metabolism , Meningitis, Meningococcal/metabolism , NF-kappa B/metabolism , Nasopharynx/metabolism , Neisseria gonorrhoeae/metabolism , Nod1 Signaling Adaptor Protein/metabolism
16.
J Bacteriol ; 195(8): 1666-79, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23378511

ABSTRACT

Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the surrounding milieu. The DNA is effective in transforming gonococci in the population, and this mechanism of DNA donation may contribute to the high degree of genetic diversity in this species. Similar to other F-like T4SSs, the gonococcal T4SS requires a putative membrane protein, TraG, for DNA transfer. In F-plasmid and related systems, the homologous protein acts in pilus production, mating pair stabilization, and entry exclusion. We characterized the localization, membrane topology, and variation of TraG in N. gonorrhoeae. TraG was found to be an inner-membrane protein with one large periplasmic region and one large cytoplasmic region. Each gonococcal strain carried one of three different alleles of traG. Strains that carried the smallest allele of traG were found to lack the peptidoglycanase gene atlA but carried a peptidoglycan endopeptidase gene in place of atlA. The purified endopeptidase degraded gonococcal peptidoglycan in vitro, cutting the peptide cross-links. Although the other two traG alleles functioned for DNA secretion in strain MS11, the smallest traG did not support DNA secretion. Despite the requirement for a mating pair stabilization homologue, static coculture transformation experiments demonstrated that DNA transfer was nuclease sensitive and required active uptake by the recipient, thus demonstrating that transfer occurred by transformation and not conjugation. Together, these results demonstrate the TraG acts in a process of DNA export not specific to conjugation and that different forms of TraG affect what substrates can be transported.


Subject(s)
Cell Membrane/physiology , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Neisseria gonorrhoeae/metabolism , Alleles , Bacteriological Techniques , Chromosomes, Bacterial , Coculture Techniques , Conjugation, Genetic , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/physiology , Membrane Proteins/genetics , Molecular Sequence Data , Neisseria gonorrhoeae/cytology , Neisseria gonorrhoeae/genetics , Plasmids , Transformation, Bacterial
17.
PLoS One ; 7(4): e35285, 2012.
Article in English | MEDLINE | ID: mdl-22536367

ABSTRACT

BACKGROUND: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg(2+) or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity. CONCLUSIONS/SIGNIFICANCE: We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Genomic Islands , Neisseria gonorrhoeae/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Binding Sites , DNA Topoisomerases, Type I/chemistry , DNA, Bacterial/metabolism , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/chemistry , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial , Magnesium/chemistry , Multigene Family , Neisseria gonorrhoeae/metabolism , Phylogeny , Protein Binding , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sodium Chloride/chemistry
18.
Microb Drug Resist ; 18(3): 271-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22432703

ABSTRACT

Neisseria gonorrhoeae encodes five lytic transglycosylases (LTs) in the core genome, and most gonococcal strains also carry the gonococcal genetic island that encodes one or two additional LTs. These peptidoglycan (PG)-degrading enzymes are required for a number of processes that are either involved in the normal growth of the bacteria or affect the pathogenesis and gene transfer aspects of this species that make N. gonorrhoeae highly inflammatory and highly genetically variable. Systematic mutagenesis determined that two LTs are involved in producing the 1,6-anhydro PG monomers that cause the death of ciliated cells in Fallopian tubes. Here, we review the information available on these enzymes and discuss their roles in bacterial growth, cell separation, autolysis, type IV secretion, and pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Glycosyltransferases/metabolism , Neisseria gonorrhoeae/enzymology , Peptide Fragments/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cilia/drug effects , Cilia/microbiology , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/pathology , Fallopian Tubes/drug effects , Fallopian Tubes/microbiology , Fallopian Tubes/pathology , Female , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Gonorrhea/microbiology , Gonorrhea/pathology , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mutagenesis , Mutation , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/pathogenicity , Peptide Fragments/pharmacology , Peptidoglycan/pharmacology
19.
J Bacteriol ; 194(9): 2275-85, 2012 May.
Article in English | MEDLINE | ID: mdl-22366419

ABSTRACT

The 57-kb gonococcal genetic island (GGI) encodes a type IV secretion system (T4SS) that is found in most strains of N. gonorrhoeae. This T4SS functions to secrete single-stranded DNA that is active in natural transformation. The GGI has also been found in some strains of N. meningitidis. We screened 126 isolates of N. meningitidis and found the GGI in 17.5% of strains, with the prevalence varying widely among serogroups. The GGI is found in a significant number of serogroup C, W-135, and X strains but was not found in strains of serogroup A, B, or Y. Through detailed PCR mapping and DNA sequencing, we identified five distinct GGI types in meningococci. DNA sequencing and a genetic assay revealed that the GGI was likely integrated into the meningococcal chromosome by the site-specific recombinase XerCD and that the GGI can be excised and lost from the genome. Functional studies showed that in contrast with the gonococcal T4SS, the meningococcal T4SS does not secrete DNA, nor does it confer Ton-independent intracellular survival. Deletion of T4SS genes did not affect association with or invasion of host cells. These results demonstrate that the GGI is found in a significant proportion of meningococcal strains and that while some strains carry multiple insertions and deletions in the GGI, other strains carry intact T4SS genes and may produce functional secretion systems.


Subject(s)
Chromosome Mapping , Chromosomes, Bacterial/genetics , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriological Techniques , Coculture Techniques , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Molecular Sequence Data , Neisseria gonorrhoeae/genetics , Promoter Regions, Genetic
20.
J Biol Chem ; 287(14): 11222-33, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22334697

ABSTRACT

Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.


Subject(s)
Drug Resistance, Bacterial , Hydrogen Peroxide/pharmacology , Metalloproteases/metabolism , Neisseria gonorrhoeae/drug effects , Virulence Factors/metabolism , Anti-Bacterial Agents/pharmacology , Carboxypeptidases/metabolism , Catalytic Domain , Conserved Sequence , Endopeptidases/metabolism , Escherichia coli/metabolism , Metalloproteases/chemistry , Metalloproteases/genetics , Mutation , Neisseria gonorrhoeae/cytology , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Neutrophils/microbiology , Peptidoglycan/metabolism , Periplasm/drug effects , Periplasm/enzymology , Phenotype , Proteolysis/drug effects , Virulence Factors/chemistry , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...