Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 52(3): 510-525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37923814

ABSTRACT

PURPOSE: Non-neutral neck positions are important initial conditions in impact scenarios, associated with a higher incidence of injury. Repositioning in finite element (FE) neck models is often achieved by applying external boundary conditions (BCs) to the head while constraining the first thoracic vertebra (T1). However, in vivo, neck muscles contract to achieve a desired head and neck position generating initial loads and deformations in the tissues. In the present study, a new muscle-based repositioning method was compared to traditional applied BCs using a contemporary FE neck model for forward head flexion of 30°. METHODS: For the BC method, an external moment (2.6 Nm) was applied to the head with T1 fixed, while for the muscle-based method, the flexors and extensors were co-contracted under gravity loading to achieve the target flexion. RESULTS: The kinematic response from muscle contraction was within 10% of the in vivo experimental data, while the BC method differed by 18%. The intervertebral disc forces from muscle contraction were agreeable with the literature (167 N compression, 12 N shear), while the BC methodology underpredicted the disc forces owing to the lack of spine compression. Correspondingly, the strains in the annulus fibrosus increased by an average of 60% across all levels due to muscle contraction compared to BC method. CONCLUSION: The muscle repositioning method enhanced the kinetic response and subsequently led to differences in tissue-level responses compared to the conventional BC method. The improved kinematics and kinetics quantify the importance of repositioning FE neck models using active muscles to achieve non-neutral neck positions.


Subject(s)
Intervertebral Disc , Neck , Biomechanical Phenomena , Finite Element Analysis , Neck Muscles/physiology
2.
J Biomech Eng ; 145(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-35864785

ABSTRACT

Contemporary finite element (FE) neck models are developed in a neutral posture; however, evaluation of injury risk for out-of-position impacts requires neck model repositioning to non-neutral postures, with much of the motion occurring in the upper cervical spine (UCS). Current neck models demonstrate a limitation in predicting the intervertebral motions within the UCS within the range of motion, while recent studies have highlighted the importance of including the tissue strains resulting from repositioning FE neck models to predict injury risk. In the current study, the ligamentous cervical spine from a contemporary neck model (GHBMC M50 v4.5) was evaluated in flexion, extension, and axial rotation by applying moments from 0 to 1.5 N·m in 0.5 N·m increments, as reported in experimental studies and corresponding to the physiologic loading of the UCS. Enhancements to the UCS model were identified, including the C0-C1 joint-space and alar ligament orientation. Following geometric enhancements, an analysis was undertaken to determine the UCS ligament laxities, using a sensitivity study followed by an optimization study. The ligament laxities were optimized to UCS-level experimental data from the literature. The mean percent difference between UCS model response and experimental data improved from 55% to 23% with enhancements. The enhanced UCS model was integrated with a ligamentous cervical spine (LS) model and assessed with independent experimental data. The mean percent difference between the LS model and the experimental data improved from 46% to 35% with the integration of the enhanced UCS model.


Subject(s)
Cervical Vertebrae , Joint Instability , Biomechanical Phenomena , Cervical Vertebrae/injuries , Finite Element Analysis , Humans , Ligaments, Articular , Range of Motion, Articular/physiology
3.
Comput Methods Biomech Biomed Engin ; 21(4): 297-324, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29528253

ABSTRACT

Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.


Subject(s)
Algorithms , Finite Element Analysis , Models, Anatomic , Spine/anatomy & histology , Child , Humans , Male , Scoliosis/pathology , Thoracic Vertebrae/anatomy & histology
4.
J Mech Behav Biomed Mater ; 79: 20-29, 2018 03.
Article in English | MEDLINE | ID: mdl-29253728

ABSTRACT

Due to reducing cost and powerful computing resources and the ability of finite element human body models (FEHBM) to predict human body response more realistically, they are gaining acceptance to be a substitute for mechanical surrogates. Unlike mechanical surrogates, FEHBM can realistically simulate human kinematics and kinetics. Moreover, an array of quantities can be directly measured from FEHBMs. However, similar to Anthropomorphic Test Devices (ATDs), in order to evaluate the biofidelity, these models must be validated using PMHS response corridors. Therefore, availability of such PMHS corridors that can be used to validate both ATD and FEHBM kinematics is of primary importance. The current study presents normalized biofidelity corridors of head CG, T1, T12, and sacrum accelerations using PMHS frontal sled tests that were previously conducted. In addition, rotational accelerations and displacements of the head are also presented. The experimental data were collected using four specimens. Each specimens were tested with non-injurious pulses using two different velocities (low: 3.6m/s and medium: 6.9m/s). These data were normalized using mass-based technique to represent mid-sized United States population. Using the normalized data, average and plus/minus one standard deviation response corridors were generated that can be used to evaluate the biofidelity of ATDs and FEHBMs.


Subject(s)
Accidents, Traffic , Models, Biological , Acceleration , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena/physiology , Humans , Middle Aged
5.
Stapp Car Crash J ; 61: 1-25, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29394433

ABSTRACT

Recent epidemiology studies have reported increase in lumbar spine injuries in frontal crashes. Whole human body finite element models (FEHBM) are frequently used to delineate mechanisms of such injuries. However, the accuracy of these models in mimicking the response of human spine relies on the characterization data of the spine model. The current study set out to generate characterization data that can be input to FEHBM lumbar spine, to obtain biofidelic responses from the models. Twenty-five lumbar functional spinal units were tested under compressive loading. A hydraulic testing machine was used to load the superior ends of the specimens. A 75N load was placed on the superior PMMA to remove the laxity in the joint and mimic the physiological load. There were three loading sequences, namely, preconditioning, 0.5 m/s (non-injurious) and 1.0 m/s (failure). Forces and displacements were collected using six-axis load cell and VICON targets. In addition, acoustic signals were collected to identify the times of failures. Finally, response corridors were generated for the two speeds. To demonstrate the corridors, GHBMC FE model was simulated in frontal impact condition with the default and updated lumbar stiffness. Bi-linear trend was observed in the force versus displacement plots. In the 0.5 m/s tests, mean toe- and linear-region stiffnesses were 0.96±0.37 and 2.44±0.92 kN/mm. In 1.0 m/s tests, the toe and linear-region stiffnesses were 1.13±0.56 and 4.6±2.5 kN/mm. Lumbar joints demonstrated 2.5 times higher stiffness in the linear-region when the loading rate was increased by 0.5 m/s.


Subject(s)
Accidents, Traffic , Lumbar Vertebrae/physiology , Motion , Spinal Injuries , Weight-Bearing/physiology , Adult , Biomechanical Phenomena , Cadaver , Finite Element Analysis , Humans , Lumbar Vertebrae/injuries , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...