Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 17(2): 731-40, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19101155

ABSTRACT

A series of arylphthalazine derivatives were synthesized and evaluated as antagonists of VEGF receptor II (VEGFR-2). IM-094482 57, which was prepared in two steps from commercially available starting materials, was found to be a potent inhibitor of VEGFR-2 in enzymatic, cellular and mitogenic assays (comparable activity to ZD-6474). Additionally, 57 inhibited the related receptor, VEGF receptor I (VEGFR-1), and showed excellent exposure when dosed orally to female CD-1 mice.


Subject(s)
Phthalazines/pharmacokinetics , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Female , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Mice , Mice, Inbred Strains , Phthalazines/administration & dosage , Phthalazines/chemical synthesis , Piperidines , Quinazolines , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 18(15): 4344-7, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18640036

ABSTRACT

We have discovered novel inhibitors of VEGFR-2 kinase with low nanomolar potency in both enzymatic and cell-based assays. Active series are heteroaryl-ketone compounds containing a central aromatic ring with either an indazolyl or indolyl keto group in the ortho orientation to the benzylic amine group (Fig. 1). The best compounds were demonstrated to be inactive against a small select panel of tyrosine and serine/threonine kinases with the exception of VEGFR-1 kinase, a close family member. In addition, the lead candidate 8 displayed acceptable exposure levels when administered orally to mice.


Subject(s)
Ketones , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Combinatorial Chemistry Techniques , Inhibitory Concentration 50 , Ketones/chemical synthesis , Ketones/chemistry , Ketones/pharmacology , Mice , Molecular Structure , Piperidines/pharmacology , Quinazolines/pharmacology , Structure-Activity Relationship
3.
Comb Chem High Throughput Screen ; 11(1): 62-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18220543

ABSTRACT

Recently, significant progress has been made towards understanding the pathogenesis of cancer from the molecular standpoint. To this end, a growing number of approaches are being exploited for the identification and validation of new therapeutic targets suitable for potent and specific intervention. The type 1 insulin-like growth factor receptor (IGF-1R) system has recently become the focus of major attention in the arena of cancer research. The involvement of the receptor and its downstream signaling cascades in the carcinogenesis process makes this system an excellent target for potential cancer therapy. Indeed, advances in the understanding of the molecular mechanisms behind IGF-1R activation have led to the discovery of agents designed selectively for targeting IGF-1R. The potential application of these inhibitors is currently under intense clinical investigation. This review describes the biology of IGF-1R particularly from a cancer perspective. The attempts to develop effective IGF-1R antagonists are discussed comprehensively with special emphasis on antibodies and small tyrosine kinase inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Insulin-Like Growth Factor I/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antibodies, Blocking , Antineoplastic Agents/pharmacology , Apoptosis/physiology , Cell Line, Tumor , Humans , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/metabolism
4.
Mol Cancer Ther ; 6(10): 2642-51, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17913857

ABSTRACT

Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) were identified in approximately 15% of all patients with non-small cell lung cancer (NSCLC). These mutations have been established as an indicator of superior response to gefitinib and erlotinib, small molecule inhibitors of the EGFR kinase domain. Whether these mutations would also render patients more susceptible to treatment with cetuximab (Erbitux), an EGFR-neutralizing antibody, is yet to be determined. In this study, we attempted to evaluate the effect of cetuximab on several NSCLC lines harboring some of the more common EGFR mutations (L858R and delL747-T753insS), as well as the recently identified kinase inhibitor-resistant mutation, T790M. We could show that the kinase activity of the abovementioned EGFR mutants was hindered by cetuximab, as detected by both cell-based phosphorylation and proliferation assays. Interestingly, cetuximab also induced enhanced degradation of the EGFR mutants as compared with the wild-type receptor. Most importantly, cetuximab successfully inhibited the growth of NSCLC lines in xenograft models. These results indicate the promising potential of cetuximab as a regimen for patients with NSCLC bearing these mutations.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Mutation/drug effects , Animals , Antibodies, Monoclonal, Humanized , Apoptosis , Blotting, Western , Cell Line, Tumor , Cetuximab , Dimerization , ErbB Receptors/metabolism , Female , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Nude , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Ubiquitin/metabolism
5.
Clin Cancer Res ; 13(5): 1540-51, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17332300

ABSTRACT

PURPOSE: Targeting the epidermal growth factor receptor (EGFR) is a validated approach to treat cancer. In non-small cell lung cancer (NSCLC), EGFR contains somatic mutations in 10% of patients, which correlates with increased response rates to small molecule inhibitors of EGFR. We analyzed the effects of the monoclonal IgG1 antibody Erbitux (cetuximab) in NSCLC xenografts with wild-type (wt) or mutated EGFR. EXPERIMENTAL DESIGN: NSCLC cell lines were grown s.c. in nude mice. Dose-dependent efficacy was established for cetuximab. To determine whether combination therapy produces tumor regressions, cetuximab was dosed at half-maximal efficacy with chemotherapy used at maximum tolerated dose. RESULTS: Cetuximab showed antitumor activity in wt (A549, NCI-H358, NCI-H292) and mutated [HCC-827 (delE746-A750), NCI-H1975 (L858R, T790M)] EGFR-expressing xenografts. In the H292 model, cetuximab and docetaxel combination therapy was more potent to inhibit tumor growth than cetuximab or docetaxel alone. Cisplatin augmented efficacy of cetuximab to produce 6 of 10 regressions, whereas 1 of 10 regressions was found with cetuximab and no regression was found with cisplatin. Using H1975 xenografts, gemcitabine increased efficacy of cetuximab resulting in 12 of 12 regressions. Docetaxel with cetuximab was more efficacious with seven of nine regressions compared with single treatments. Cetuximab inhibited autophosphorylation of EGFR in both H292 and H1975 tumor lysates. Exploring the underlying mechanism for combination effects in the H1975 xenograft model, docetaxel in combination with cetuximab added to the antiproliferative effects of cetuximab but was the main component in this drug combination to induce apoptosis. CONCLUSIONS: Cetuximab showed antitumor activity in NSCLC models expressing wt and mutated EGFR. Combination treatments increased the efficacy of cetuximab, which may be important for the management of patients with chemorefractory NSCLC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Animals , Antibodies, Monoclonal, Humanized , Apoptosis/drug effects , Blotting, Western , Cetuximab , Cisplatin/therapeutic use , Docetaxel , Dose-Response Relationship, Drug , ErbB Receptors/genetics , Humans , Mice , Mice, Nude , Neoplasms, Experimental/drug therapy , Taxoids/therapeutic use , Transplantation, Heterologous , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 16(19): 5102-6, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16887347

ABSTRACT

Novel tricyclic derivatives containing an oxazepine, thiazepine, or diazepine ring were studied for their EGFR tyrosine kinase inhibitory activity. While the oxazepines were in general more potent than thiazepines, the diazepines displayed somewhat different structure-activity relationships. Moreover, the diazepines, in contrast to the oxazepines, showed appreciable inhibitory activity against the KDR tyrosine kinase. Furthermore, both oxazepines and diazepines demonstrated significant ability to inhibit autophosphorylation of EGFR in DiFi cells (generally, IC(50) values in the single-digit micromolar to submicromolar range).


Subject(s)
Antineoplastic Agents/chemical synthesis , Azepines/chemical synthesis , Azepines/pharmacology , ErbB Receptors/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , Antineoplastic Agents/pharmacology , Azepines/chemistry , Cell Line, Tumor , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Inhibitory Concentration 50 , Neoplasm Proteins/antagonists & inhibitors , Phosphorylation/drug effects , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
7.
Bioorg Med Chem Lett ; 16(6): 1643-6, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16412636

ABSTRACT

A novel class of pyrimido[4,5-b]-1,4-benzoxazepines is described as inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinase. Two compounds display potent EGFR inhibitory activity of less than 1 microM in cellular phosphorylation assays (IC(50) 0.47-0.69 microM) and are highly selective against a small kinase panel. Such compounds demonstrate anti-EGFR activity within a class that is different from any known EGFR inhibitor scaffolds. They also provide a basis for the design of kinase inhibitors with the desired selectivity profile.


Subject(s)
Azepines/chemical synthesis , Azepines/pharmacology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Azepines/chemistry , Binding Sites , Cell Proliferation/drug effects , Cells, Cultured , Humans , Molecular Structure , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, ErbB-2/antagonists & inhibitors , Structure-Activity Relationship , Substrate Specificity
8.
Mol Cancer Ther ; 4(11): 1801-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16276002

ABSTRACT

Etk, the 70-kDa member of the Tec family of nonreceptor protein tyrosine kinases, is expressed in a variety of hematopoietic, epithelial, and endothelial cells and was shown to be involved in several cellular processes, including proliferation, differentiation, and motility. In this study, we describe a novel approach using a human single-domain antibody phage display library for the generation of intrabodies directed against Etk. These single-domain antibodies bind specifically to recombinant Etk and efficiently block its kinase activity. When expressed in transformed cells, these antibodies associated tightly with Etk, leading to significant blockade of Etk enzymatic activity and inhibition of clonogenic cell growth in soft agar. Our results indicate that Etk may play a role in Src-induced cellular transformation and thus may represent a good target for cancer intervention. Furthermore, our single-domain antibody-based intrabody system proves to be an excellent tool for future intracellular targeting of other signaling molecules.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/metabolism , Protein-Tyrosine Kinases/physiology , Agar/chemistry , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cloning, Molecular , DNA/chemistry , Dose-Response Relationship, Drug , Enzyme Activation , Glutathione Transferase/metabolism , Humans , Immunoprecipitation , Mice , NIH 3T3 Cells , Peptide Library , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , RNA Interference , Recombinant Proteins/chemistry , Signal Transduction , Transfection
10.
Glycoconj J ; 19(7-9): 517-26, 2002.
Article in English | MEDLINE | ID: mdl-14758075

ABSTRACT

Galectin-8 belongs to the family of tandem-repeat type galectins. It consists as several isoforms, each made of two domains of approximately 140 amino-acids, both having a carbohydrate recognition domain (CRD). These domains are joined by a 'link peptide' of variable length. The human galectin-8 gene covers 33 kbp of genomic DNA. It is localized on chromosome 1 (1q42.11) and contains 11 exons. The gene produces by alternative splicing 14 different transcripts, altogether encoding 6 proteins. Galectin-8, like other galectins, is a secreted protein. Upon secretion galectin-8 acts as a physiological modulator of cell adhesion. When immobilized, it functions as a matrix protein equipotent to fibronectin in promoting cell adhesion by ligation and clustering of a selective subset of cell surface integrin receptors. Complex formation between galectin-8 and integrins involves sugar-protein interactions and triggers integrin-mediated signaling cascades such as Tyr phosphorylation of FAK and paxillin. In contrast, when present in excess as a soluble ligand, galectin-8 (like fibronectin) forms a complex with integrins that negatively regulates cell adhesion. Such a mechanism allows local signals emitted by secreted galectin-8 to specify territories available for cell adhesion and migration. Due to its dual effects on the adhesive properties of cells and its association with fibronectin, galectin-8 might be considered as a novel type of a matricellular protein. Galectin-8 levels of expression positively correlate with certain human neoplasms, prostate cancer being the best example studied thus far. The overexpressed lectin might give these neoplasms some growth and metastasis related advantages due to its ability to modulate cell adhesion and cellular growth. Hence, galectin-8 may modulate cell-matrix interactions and regulate cellular functions in a variety of physiological and pathological conditions.


Subject(s)
Galectins/metabolism , Animals , Cell Adhesion , Cell Division , Galectins/chemistry , Galectins/genetics , Humans , Integrins/metabolism , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...