Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 8(4): 1735-1748, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35226455

ABSTRACT

The wet spinning of cytocompatible, bioresorbable, and knittable chitosan (CTS) monofilaments would be advantageous for a variety of surgical applications. The complexation capacity of chitosan with Cu2+ or Zn2+ can be leveraged to enhance its antibacterial activity, but not at the expense of cytocompatibility. In this work, a wet-spinning process was adapted for the in situ incorporation of Cu2+ or Zn2+ with chitosan dopes to produce monofilaments at different drawing ratios (τtot) with various cation/glucosamine molar ratios, evaluated in the fibers (rCu,f and rZn,f). Cytocompatibility and antibacterial activity of wet-spun monofilaments were, respectively, quantified by in vitro live-dead assays on balb 3T3 and by different evaluations of the proliferation inhibition of Staphylococcus epidermidis (Gram+) and Escherichia coli (Gram-). Knittability was tested by a specific tensile test using a knitting needle and evaluated with an industrial knitting machine. It was found that rCu,f = 0.01 and rZn,f = 0.03 significantly increase the antibacterial activity without compromising cytocompatibility. Wet spinning with τtot = 1.6 allowed the production of knittable CTS-Cu monofilaments, as confirmed by knitting assays under industrial conditions.


Subject(s)
Chitosan , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Escherichia coli , Zinc/pharmacology
2.
Macromol Rapid Commun ; 35(8): 794-800, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24700443

ABSTRACT

A straightforward and expeditious monotopic approach for the preparation of 1,2,3-triazolium-based poly(ionic liquids) (TPILs) is reported. It is based on the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer in the presence of methyl iodide or N-methyl bis[(trifluoromethyl)sulfonyl]imide alkylating agents. Poly(1,2,3-triazole)s generated in bulk or by thermal azide-alkyne cycloaddition (AAC) are quaternized in-situ to afford TPILs composed of 1,3,4- and 1,3,5-trisubstituted 1,2,3-triazolium units. The physical and ion-conducting properties of the prepared samples are compared with the TPILs composed solely of 1,3,4-trisubstituted 1,2,3-triazolium units obtained through a multistep approach involving copper(I)-catalyzed AAC polyaddition, quaternization of the 1,2,3-triazole groups, and anion metathesis. TPILs obtained through the monotopic approach display thermal stabilities and ionic conductivities comparable to their pure regioisomeric analogues.


Subject(s)
Ionic Liquids/chemical synthesis , Polymers/chemical synthesis , Triazoles/chemistry , Alkylating Agents/chemistry , Catalysis , Hydrocarbons, Iodinated/chemistry , Ionic Liquids/chemistry , Ions/chemistry , Models, Chemical , Molecular Structure , Polymers/chemistry , Proton Magnetic Resonance Spectroscopy , Solvents , Stereoisomerism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...