Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 15(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37758449

ABSTRACT

Mitochondrial genomes are expected to show adaptations for optimizing aerobic respiration in birds that make intense use of flight. However, there is limited empirical evidence of such a relationship. We here examine correlates of several mitochondrial genome characteristics and flight use across a diverse sample of 597 bird species. We developed an index of flight use intensity that ranged from 0 in flightless species to 9 in migratory hummingbirds and examined its association with nucleobase composition, amino acid class composition, and amino acid site allelic variation using phylogenetic comparative methods. We found no evidence of mitochondrial genome adaptations to flight intensity. Neither nucleotide composition nor amino acid properties showed consistent patterns related to flight use. While specific sites in mitochondrial genes exhibited variation associated with flight intensity, there was limited association between specific amino acid residues and flight intensity levels. Our findings suggest a complex genetic architecture for aerobic performance traits, where multiple genes in both mitochondria and the nucleus may contribute to overall performance. Other factors, such as gene expression regulation and anatomical adaptations, may play a more significant role in influencing flight performance than changes in mitochondrial genes. These findings highlight the need for comprehensive genomic analyses to unravel the intricate relationship between genetic variants and aerobic performance in birds.

2.
Curr Biol ; 32(15): 3389-3397.e8, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35728597

ABSTRACT

Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km3 of ash and other particles.1 The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand.2 This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock,2,3 devastating habitats and likely causing widespread population extinctions.4-7 An additional devastating super-colossal eruption (>100 km3) of the Taupo supervolcano occurred approximately 1,690 YBP.8 The impacts of such massive but ephemeral natural disasters on contemporary population genetic structure remain underexplored. Here, we combined data for 4,951 SNPs with spatially explicit demographic and coalescent models within an approximate Bayesian computation framework to test the drivers of genetic structure in brown kiwi (Apteryx mantelli). Our results strongly support the importance of eruptions of the Taupo supervolcano in restructuring pre-existing geographic patterns of population differentiation and genetic diversity. Range shifts due to climatic oscillations-a frequent explanation for genetic structure9-are insufficient to fully explain the empirical data. Meanwhile, recent range contraction and fragmentation due to historically documented anthropogenic habitat alteration adds no explanatory power to our models. Our results support a major role for cycles of destruction and post-volcanic recolonization in restructuring the population genomic landscape of brown kiwi and highlight how ancient and ephemeral mega-disasters may leave a lasting legacy on patterns of intraspecific genetic variation.


Subject(s)
Ecosystem , Genetic Structures , Bayes Theorem , Genetic Variation , Genetics, Population , New Zealand
3.
Proc Biol Sci ; 288(1965): 20212362, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34905706

ABSTRACT

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.


Subject(s)
Genetic Drift , Inbreeding , Genetic Variation , Genetics, Population , Genome , New Zealand , Population Density
4.
BMC Evol Biol ; 19(1): 52, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30744573

ABSTRACT

BACKGROUND: DNA barcoding utilises a standardised region of the cytochrome c oxidase I (COI) gene to identify specimens to the species level. It has proven to be an effective tool for identification of avian samples. The unique island avifauna of New Zealand is taxonomically and evolutionarily distinct. We analysed COI sequence data in order to determine if DNA barcoding could accurately identify New Zealand birds. RESULTS: We sequenced 928 specimens from 180 species. Additional Genbank sequences expanded the dataset to 1416 sequences from 211 of the estimated 236 New Zealand species. Furthermore, to improve the assessment of genetic variation in non-endemic species, and to assess the overall accuracy of our approach, sequences from 404 specimens collected outside of New Zealand were also included in our analyses. Of the 191 species represented by multiple sequences, 88.5% could be successfully identified by their DNA barcodes. This is likely a conservative estimate of the power of DNA barcoding in New Zealand, given our extensive geographic sampling. The majority of the 13 groups that could not be distinguished contain recently diverged taxa, indicating incomplete lineage sorting and in some cases hybridisation. In contrast, 16 species showed evidence of distinct intra-species lineages, some of these corresponding to recognised subspecies. For species identification purposes a character-based method was more successful than distance and phylogenetic tree-based methods. CONCLUSIONS: DNA barcodes accurately identify most New Zealand bird species. However, low levels of COI sequence divergence in some recently diverged taxa limit the identification power of DNA barcoding. A small number of currently recognised species would benefit from further systematic investigations. The reference database and analysis presented will provide valuable insights into the evolution, systematics and conservation of New Zealand birds.


Subject(s)
Biological Evolution , Birds/classification , Conservation of Natural Resources , DNA Barcoding, Taxonomic/methods , Animals , Birds/genetics , Electron Transport Complex IV/genetics , Geography , Islands , New Zealand , Phylogeny , Species Specificity
5.
Proc Natl Acad Sci U S A ; 113(38): E5580-7, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27573837

ABSTRACT

Molecular dating largely overturned the paradigm that global cooling during recent Pleistocene glacial cycles resulted in a burst of species diversification although some evidence exists that speciation was commonly promoted in habitats near the expanding and retracting ice sheets. Here, we used a genome-wide dataset of more than half a million base pairs of DNA to test for a glacially induced burst of diversification in kiwi, an avian family distributed within several hundred kilometers of the expanding and retracting glaciers of the Southern Alps of New Zealand. By sampling across the geographic range of the five kiwi species, we discovered many cryptic lineages, bringing the total number of kiwi taxa that currently exist to 11 and the number that existed just before human arrival to 16 or 17. We found that 80% of kiwi diversification events date to the major glacial advances of the Middle and Late Pleistocene. During this period, New Zealand was repeatedly fragmented by glaciers into a series of refugia, with the tiny geographic ranges of many kiwi lineages currently distributed in areas adjacent to these refugia. Estimates of effective population size through time show a dramatic bottleneck during the last glacial cycle in all but one kiwi lineage, as expected if kiwi were isolated in glacially induced refugia. Our results support a fivefold increase in diversification rates during key glacial periods, comparable with levels observed in classic adaptive radiations, and confirm that at least some lineages distributed near glaciated regions underwent rapid ice age diversification.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Speciation , Palaeognathae/genetics , Animals , Ecosystem , Humans , Ice Cover , New Zealand , Phylogeny , Sequence Analysis, DNA
6.
Mol Biol Evol ; 31(7): 1686-96, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24825849

ABSTRACT

One of the most startling discoveries in avian molecular phylogenetics is that the volant tinamous are embedded in the flightless ratites, but this topology remains controversial because recent morphological phylogenies place tinamous as the closest relative of a monophyletic ratite clade. Here, we integrate new phylogenomic sequences from 1,448 nuclear DNA loci totaling almost 1 million bp from the extinct little bush moa, Chilean tinamou, and emu with available sequences from ostrich, elegant crested tinamou, four neognaths, and the green anole. Phylogenetic analysis using standard homogeneous models and heterogeneous models robust to common topological artifacts recovered compelling support for ratite paraphyly with the little bush moa closest to tinamous within ratites. Ratite paraphyly was further corroborated by eight independent CR1 retroposon insertions. Analysis of morphological characters reinterpreted on a 27-gene paleognath topology indicates that many characters are convergent in the ratites, probably as the result of adaptation to a cursorial life style.


Subject(s)
Palaeognathae/classification , Palaeognathae/genetics , Adaptation, Physiological , Animals , Bayes Theorem , Evolution, Molecular , Genome , Likelihood Functions , Models, Genetic , Palaeognathae/anatomy & histology , Palaeognathae/physiology , Phylogeny , Sequence Analysis, DNA
7.
Proc Biol Sci ; 279(1747): 4617-25, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-22977150

ABSTRACT

The origin and timing of the diversification of modern birds remains controversial, primarily because phylogenetic relationships are incompletely resolved and uncertainty persists in molecular estimates of lineage ages. Here, we present a species tree for the major palaeognath lineages using 27 nuclear genes and 27 archaic retroposon insertions. We show that rheas are sister to the kiwis, emu and cassowaries, and confirm ratite paraphyly because tinamous are sister to moas. Divergence dating using 10 genes with broader taxon sampling, including emu, cassowary, ostrich, five kiwis, two rheas, three tinamous, three extinct moas and 15 neognath lineages, suggests that three vicariant events and possibly two dispersals are required to explain their historical biogeography. The age of crown group birds was estimated at 131 Ma (95% highest posterior density 122-138 Ma), similar to previous molecular estimates. Problems associated with gene tree discordance and incomplete lineage sorting in birds will require much larger gene sets to increase species tree accuracy and improve error in divergence times. The relatively rapid branching within neoaves pre-dates the extinction of dinosaurs, suggesting that the genesis of the radiation within this diverse clade of birds was not in response to the Cretaceous-Paleogene extinction event.


Subject(s)
Avian Proteins/genetics , Birds/genetics , Phylogeny , Retroelements/genetics , Animals , Biodiversity , Fossils , Genetic Speciation , Phylogeography , Sequence Analysis, DNA
8.
Mol Ecol Resour ; 9(5): 1415-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-21564924

ABSTRACT

We isolated and tested 16 microsatellite loci in black-tailed godwits from the Netherlands (Limosa limosa limosa), and from Australasia (subspecies melanuroides). One locus was monomorphic, two loci had null-alleles and one was significantly heterozygote deficient. The remaining 12 polymorphic loci had on average 7.9 alleles (range 5-11) and the mean expected heterozygosity was 0.69. No significant linkage disequilibrium between the loci was observed and all loci were autosomal. Fourteen loci were successfully cross-amplified in bar-tailed godwit (Limosa lapponica).

9.
Proc Biol Sci ; 273(1582): 11-7, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16519228

ABSTRACT

Classic problems in historical biogeography are where did penguins originate, and why are such mobile birds restricted to the Southern Hemisphere? Competing hypotheses posit they arose in tropical-warm temperate waters, species-diverse cool temperate regions, or in Gondwanaland approximately 100 mya when it was further north. To test these hypotheses we constructed a strongly supported phylogeny of extant penguins from 5851 bp of mitochondrial and nuclear DNA. Using Bayesian inference of ancestral areas we show that an Antarctic origin of extant taxa is highly likely, and that more derived taxa occur in lower latitudes. Molecular dating estimated penguins originated about 71 million years ago in Gondwanaland when it was further south and cooler. Moreover, extant taxa are inferred to have originated in the Eocene, coincident with the extinction of the larger-bodied fossil taxa as global climate cooled. We hypothesize that, as Antarctica became ice-encrusted, modern penguins expanded via the circumpolar current to oceanic islands within the Antarctic Convergence, and later to the southern continents. Thus, global cooling has had a major impact on penguin evolution, as it has on vertebrates generally. Penguins only reached cooler tropical waters in the Galapagos about 4 mya, and have not crossed the equatorial thermal barrier.


Subject(s)
Animal Migration , Spheniscidae/genetics , Animals , Antarctic Regions , Cytochromes b/genetics , Genes, RAG-1 , Phylogeny , RNA/genetics , RNA, Mitochondrial , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Spheniscidae/classification , Spheniscidae/growth & development
10.
Proc Natl Acad Sci U S A ; 102(23): 8257-62, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15928096

ABSTRACT

The tempo and mode of evolution of the extinct giant moas of New Zealand remain obscure because the number of lineages and their divergence times cannot be estimated reliably by using fossil bone characters only. We therefore extracted ancient DNA from 125 specimens and genetically typed them for a 658-bp mtDNA control region sequence. The sequences detected 14 monophyletic lineages, 9 of which correspond to currently recognized species. One of the newly detected lineages was a genetically divergent form of Megalapteryx originally described as a separate species, two more were lineages of Pachyornis in southern and northeastern New Zealand, and two were basal lineages of South Island Dinornis. When results from genetic typing and previous molecular sexing were combined, at least 33.6% of the specimens were incorrectly classified. We used longer sequences of the control region and nine other mtDNA genes totaling 2,814 base pairs to derive a strongly supported phylogeny of the 14 moa lineages. Molecular dating estimated the most recent common ancestor of moas existed after the Oligocene drowning of New Zealand. However, a cycle of lineage-splitting occurred approximately 4-10 million years ago, when the landmass was fragmented by tectonic and mountain-building events and general cooling of the climate. These events resulted in the geographic isolation of lineages and ecological specialization. The spectacular radiation of moa lineages involved significant changes in body size, shape, and mass and provides another example of the general influence of large-scale paleoenvironmental changes on vertebrate evolutionary history.


Subject(s)
Biological Evolution , Palaeognathae/classification , Palaeognathae/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Molecular Sequence Data , New Zealand , Palaeognathae/physiology , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Time Factors
11.
Proc Biol Sci ; 269(1493): 839-46, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11958716

ABSTRACT

To test the hypothesis put forward by Feduccia of the origin of modern birds from transitional birds, we sequenced the first two complete mitochondrial genomes of shorebirds (ruddy turnstone and blackish oystercatcher) and compared their sequences with those of already published avian genomes. When corrected for rate heterogeneity across sites and non-homogeneous nucleotide compositions among lineages in maximum likelihood (ML), the optimal tree places palaeognath birds as sister to the neognaths including shorebirds. This optimal topology is a re-rooting of recently published ordinal-level avian trees derived from mitochondrial sequences. Using a penalized likelihood (PL) rate-smoothing process in conjunction with dates estimated from fossils, we show that the basal splits in the bird tree are much older than the Cretaceous-Tertiary (K-T) boundary, reinforcing previous molecular studies that rejected the derivation of modern birds from transitional shorebirds. Our mean estimate for the origin of modern birds at about 123 million years ago (Myr ago) is quite close to recent estimates using both nuclear and mitochondrial genes, and supports theories of continental break-up as a driving force in avian diversification. Not only did many modern orders of birds originate well before the K-T boundary, but the radiation of major clades occurred over an extended period of at least 40 Myr ago, thus also falsifying Feduccia's rapid radiation scenario following a K-T bottleneck.


Subject(s)
Birds/classification , Birds/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Animals , Genome , Models, Genetic , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...