Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Pathogens ; 12(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37624025

ABSTRACT

(1) Background: Bacillus cereus biovar anthracis (Bcbva) was the causative agent of an anthrax-like fatal disease among wild chimpanzees in 2001 in Côte d'Ivoire. Before this, there had not been any description of an anthrax-like disease caused by typically avirulent Bacillus cereus. Genetic analysis found that B. cereus had acquired two anthrax-like plasmids, one a pXO1-like toxin producing plasmid and the other a pXO2-like plasmid encoding capsule. Bcbva caused animal fatalities in Cameroon, Democratic Republic of Congo, and the Central African Republic between 2004 and 2012. (2) Methods: The pathogen had acquired plasmids in the wild and that was discovered as the cause of widespread animal fatalities in the early 2000s. Primate bones had been shipped out of the endemic zone for anthropological studies prior to the realized danger of contamination with Bcbva. Spores were isolated from the bone fragments and positively identified as Bcbva. Strains were characterized by classical microbiological methods and qPCR. Four new Bcbva isolates were whole-genome sequenced. Chromosomal and plasmid phylogenomic analysis was performed to provide temporal and spatial context to these new strains and previously sequenced Bcbva. Tau and principal component analyses were utilized to identify genetic and spatial case patterns in the Taï National Park anthrax zone. (3) Results: Preliminary studies positively identified Bcbva presence in several archival bone fragments. The animals in question died between 1994 and 2010. Previously, the earliest archival strains of Bcbva were identified in 1996. Though the pathogen has a homogeneous genome, spatial analyses of a subset of mappable isolates from Taï National Park revealed strains found closer together were generally more similar, with strains from chimpanzees and duikers having the widest distribution. Ancestral strains were located mostly in the west of the park and had lower spatial clustering compared to more recent isolates, indicating a local increase in genetic diversity of Bcbva in the park over space and time. Global clustering analysis indicates patterns of genetic diversity and distance are shared between the ancestral and more recently isolated type strains. (4) Conclusions: Our strains have the potential to unveil historical genomic information not available elsewhere. This information sheds light on the evolution and emergence of a dangerous anthrax-causing pathogen.

2.
Sci Rep ; 13(1): 5060, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977718

ABSTRACT

The Bacillus anthracis exosporium nap is the outermost portion of spore that interacts with the environment and host systems. Changes to this layer have the potential to impact wide-ranging physiological and immunological processes. The unique sugar, anthrose, normally coats the exosporium nap at its most distal points. We previously identified additional mechanisms rendering B. anthracis anthrose negative. In this work, several new ant - B. anthracis strains are identified and the impact of anthrose negativity on spore physiology is investigated. We demonstrate that live-attenuated Sterne vaccines as well as culture filtrate anthrax vaccines generate antibodies targeting non-protein components of the spore. The role of anthrose as a vegetative B. anthracis Sterne signaling molecule is implicated by luminescent expression strain assays, RNA-seq experiments, and toxin secretion analysis by western blot. Pure anthrose and the sporulation-inducing nucleoside analogue decoyinine had similar effects on toxin expression. Co-culture experiments demonstrated gene expression changes in B. anthracis depend on intracellular anthrose status (cis) in addition to anthrose status of extracellular interactions (trans). These findings provide a mechanism for how a unique spore-specific sugar residue affects physiology, expression and genetics of vegetative B. anthracis with impacts on the ecology, pathogenesis, and vaccinology of anthrax.


Subject(s)
Bacillus anthracis , Bacillus anthracis/metabolism , Sugars/metabolism , Spores, Bacterial/metabolism , Spores/metabolism , Bacterial Proteins/metabolism
3.
Emerg Infect Dis ; 28(11): 2206-2213, 2022 11.
Article in English | MEDLINE | ID: mdl-36285873

ABSTRACT

Anthrax is a priority zoonosis for control in Vietnam. The geographic distribution of anthrax remains to be defined, challenging our ability to target areas for control. We analyzed human anthrax cases in Vietnam to obtain anthrax incidence at the national and provincial level. Nationally, the trendline for cases remained at ≈61 cases/year throughout the 26 years of available data, indicating control efforts are not effectively reducing disease burden over time. Most anthrax cases occurred in the Northern Midlands and Mountainous regions, and the provinces of Lai Chau, Dien Bien, Lao Cai, Ha Giang, Cao Bang, and Son La experienced some of the highest incidence rates. Based on spatial Bayes smoothed maps, every region of Vietnam experienced human anthrax cases during the study period. Clarifying the distribution of anthrax in Vietnam will enable us to better identify risk areas for improved surveillance, rapid clinical care, and livestock vaccination campaigns.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Humans , Anthrax/epidemiology , Anthrax/prevention & control , Vietnam/epidemiology , Bayes Theorem , Zoonoses/epidemiology , Livestock , Disease Outbreaks
4.
Microorganisms ; 10(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36014002

ABSTRACT

Brucellosis is one of the most important and widespread bacterial zoonoses worldwide. Cases are reported annually across the range of known infectious species of the genus Brucella. Globally, Brucella melitensis, primarily hosted by domestic sheep and goats, affects large proportions of livestock herds, and frequently spills over into humans. While some species, such as Brucella abortus, are well controlled in livestock in areas of North America, the Greater Yellowstone Ecosystem supports the species in native wild ungulates with occasional spillover to livestock. Elsewhere in North America, other Brucella species still infect domestic dogs and feral swine, with some associated human cases. Brucella spp. patterns vary across space globally with B. abortus and B. melitensis the most important for livestock control. A myriad of other species within the genus infect a wide range of marine mammals, wildlife, rodents, and even frogs. Infection in humans from these others varies with geography and bacterial species. Control in humans is primarily achieved through livestock vaccination and culling and requires accurate and rapid species confirmation; vaccination is Brucella spp.-specific and typically targets single livestock species for distribution. Traditional bacteriology methods are slow (some media can take up to 21 days for bacterial growth) and often lack the specificity of molecular techniques. Here, we summarize the molecular techniques for confirming and identifying specific Brucella species and provide recommendations for selecting the appropriate methods based on need, sensitivity, and laboratory capabilities/technology. As vaccination/culling approaches are costly and logistically challenging, proper diagnostics and species identification are critical tools for targeting surveillance and control.

6.
PLoS Biol ; 18(12): e3001052, 2020 12.
Article in English | MEDLINE | ID: mdl-33370274

ABSTRACT

Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.


Subject(s)
Amino Sugars/genetics , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Deoxyglucose/analogs & derivatives , Amino Sugars/immunology , Amino Sugars/metabolism , Animals , Anthrax/genetics , Anthrax/immunology , Anthrax/metabolism , Bacillus anthracis/pathogenicity , Biological Evolution , Deoxyglucose/genetics , Deoxyglucose/immunology , Deoxyglucose/metabolism , Disease Models, Animal , Disease Outbreaks , Evolution, Molecular , Female , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred A , Moths/microbiology , Oligosaccharides/genetics , Oligosaccharides/immunology , Oligosaccharides/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Spores, Bacterial/metabolism
7.
Pathogens ; 9(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371332

ABSTRACT

Anthrax is a worldwide zoonotic disease caused by the spore-forming bacterium Bacillus anthracis. Primarily a disease of herbivores, human infections often result from direct contact with contaminated animal products (cutaneous and inhalational anthrax) or through consumption of infected meat (gastrointestinal anthrax). The genetic near neighbor, Bacillus cereus biovar anthracis (Bcbva), causes an anthrax-like illness in the wildlife and livestock of west and central Africa due to the presence and expression of B. anthracis-specific virulence factors in this background. While Bcbva infections have not been reported in humans, a recent seroprevalence study detected Bcbva antibodies in the rural population around Taï National Park. This work describes the development of new TaqMan multiplex PCRs for the simultaneous detection of B. anthracis and Bcbva. The assays are designed to amplify Ba-1, capB, and lef markers in B. anthracis and genomic island IV (GI4), capB, and lef in Bcbva. Our assays allow for the rapid discrimination of B. anthracis and Bcbva and will provide insights into the molecular epidemiology of these two important pathogens that share an overlapping geographical range in west and central Africa.

8.
Proc Natl Acad Sci U S A ; 117(8): 4273-4280, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32054783

ABSTRACT

Bacillus anthracis, the etiological agent of anthrax, is a well-established model organism. For B. anthracis and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host-pathogen contacts at carcass sites, which can occur years after death of the previous host. For the period between contact and death, all of our knowledge is based upon experimental data from domestic livestock and laboratory animals. Here we use a noninvasive method to explore the dynamics of anthrax infections, by evaluating the terminal diversity of B. anthracis in anthrax carcasses. We present an application of population genetics theory, specifically, coalescence modeling, to intrainfection populations of B. anthracis to derive estimates for the duration of the acute phase of the infection and effective population size converted to the number of colony-forming units establishing infection in wild plains zebra (Equus quagga). Founding populations are small, a few colony-forming units, and infections are rapid, lasting roughly between 1 d and 3 d in the wild. Our results closely reflect experimental data, showing that small founding populations progress acutely, killing the host within days. We believe this method is amendable to other bacterial diseases from wild, domestic, and human systems.


Subject(s)
Anthrax/transmission , Anthrax/veterinary , Bacillus anthracis/physiology , Equidae/microbiology , Animals , Anthrax/microbiology , Bacillus anthracis/genetics , Disease Models, Animal , Humans , Models, Biological , Mutation
9.
BMC Microbiol ; 20(1): 6, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910798

ABSTRACT

BACKGROUND: The exosporium of the anthrax-causing Bacillus anthracis endospores display a tetrasaccharide composed of three rhamnose residues and an unusual sugar termed anthrose. Anthrose is a proposed potential target for immunotherapy and for specific detection of B. anthracis. Although originally thought to be ubiquitous in B. anthracis, previous work identified an anthrose negative strain from a West African lineage isolated from cattle that could represent a vaccine escape mutant. These strains carry genes required for expression of the anthrose operon but premature stop codons resulting from an 8-bp insertion in BAS3320 (an amino-transferase) and a C/T substitution at position 892 of the BAS3321 (a glycosyltransferase) gene prevent anthrose expression. Various other single nucleotide polymorphisms (SNPs) have been identified throughout the operon and could be the basis for detection of anthrose-deficient strains. RESULTS: In this study, we evaluated rhAmp genotypic assays based on SNPs at positions 892 and 1352 of BAS3321 for detection and differentiation of anthrose negative (Ant-) West African strains. Discrimination of anthrose negative West African isolates was achieved with as low as 100 fg of DNA, whereas consistent genotyping of Sterne necessitated at least 1 pg of DNA. CONCLUSIONS: Screening of a global panel of B. anthracis isolates showed anthrose-expressing alleles are prevalent worldwide whereas the anthrose-deficient phenotype is to date limited to West Africa. Our work also revealed a third, previously unreported anthrose genotype in which the operon is altogether missing from a Polish B. anthracis isolate.


Subject(s)
Bacillus anthracis/genetics , Genotyping Techniques/methods , Glycosyltransferases/genetics , Polymorphism, Single Nucleotide , Amino Sugars/genetics , Amino Sugars/metabolism , Animals , Bacillus anthracis/metabolism , Bacterial Proteins/genetics , Cattle , Deoxyglucose/analogs & derivatives , Deoxyglucose/genetics , Deoxyglucose/metabolism , Evolution, Molecular , Mutagenesis, Insertional , Operon
10.
Am J Trop Med Hyg ; 102(2): 392-402, 2020 02.
Article in English | MEDLINE | ID: mdl-31802730

ABSTRACT

Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock. Globally, the genetic populations of B. anthracis include multiple lineages, and each may have different ecological requirements and geographical distributions. It is, therefore, essential to identify environmental associations within lineages to predict geographical distributions and risk areas with improved accuracy. Here, we model the ecological niche and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications; the NASA atmospheric data reanalysis of satellite information with multiple data products) bioclimate variables (i.e., MERRAclim data) and updated soil variables. We filter the occurrence data associated with the A1.a/Western North American sub-lineage of B. anthracis from historical anthrax outbreaks using the multiple-locus variable-number tandem repeat system. In addition, we also incorporate recent cases associated with B. anthracis A1.a sub-lineage from 2008 to 2012 in Montana, Colorado, and Texas. Our results provide the predicted distribution of the A1.a sub-lineage of B. anthracis for the United States with better predictive accuracy and higher spatial resolution than previous estimates. Our prediction serves as an improved disease risk map to better inform anthrax surveillance and control in the United States, particularly the Dakotas and Montana where this sub-lineage is persistent.


Subject(s)
Anthrax/veterinary , Bacillus anthracis , Climate , Disease Outbreaks , Forecasting , Genotype , Animals , Animals, Wild , Anthrax/epidemiology , Anthrax/microbiology , Livestock , Models, Biological , United States/epidemiology
11.
PLoS One ; 13(12): e0209120, 2018.
Article in English | MEDLINE | ID: mdl-30557394

ABSTRACT

The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently taken up by another host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature, providing a basis for the type of response by public health officials and investigators.


Subject(s)
Bacillus anthracis/genetics , Bacillus anthracis/physiology , Bacterial Proteins/genetics , Gene Expression Profiling , Laboratories , Spores, Bacterial/physiology , Bacillus anthracis/metabolism , Species Specificity
15.
BMC Ecol ; 15: 23, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26669305

ABSTRACT

BACKGROUND: Anthrax, a soil-borne zoonosis caused by the bacterium Bacillus anthracis, is enzootic in areas of North America with frequent outbreaks in west Texas. Despite a long history of study, pathogen transmission during natural outbreaks remains poorly understood. Here we combined case-level spatio-temporal analysis and high resolution genotyping to investigate anthrax transmission dynamics. Carcass locations from a single white-tailed deer, Odocoileus virginanus, outbreak were analyzed for spatial clustering using K-function analysis and directionality with trend surface analysis and the direction test. RESULTS: The directionalities were compared to results of high resolution genotyping. The results of the spatial clustering analyses, combined with deer movement data, suggest anthrax transmission events occur within limited spatial areas, with carcass locations occurring within the activity space of adjacent cases. The directionality of the outbreak paralleled adjacent dry river beds. Isolates from the outbreak were represented by a single genotype based on multiple locus variable number tandem repeat analysis (MLVA); four sub-genotypes were identified using single nucleotide repeat (SNR) analysis. CONCLUSIONS: Areas of high transmission agreed spatially with areas of higher SNR genetic diversity; however, SNRs did not provide clear evidence of linear transmission. Overlap of case home ranges provides spatial and temporal support for localized transmission, which may include the role of necrophagous or hematophagous flies in outbreaks in this region. These results emphasize the need for active surveillance and prompt cleanup of anthrax carcasses to control anthrax both during outbreaks and between seasons.


Subject(s)
Anthrax/epidemiology , Anthrax/veterinary , Bacillus anthracis/genetics , Deer/microbiology , Genetic Variation , Animals , Bacillus anthracis/classification , Bacterial Typing Techniques , Cluster Analysis , Disease Outbreaks/veterinary , Female , Genotype , Male , Minisatellite Repeats , Spatio-Temporal Analysis , Texas
17.
PLoS Negl Trop Dis ; 9(8): e0003931, 2015.
Article in English | MEDLINE | ID: mdl-26291625

ABSTRACT

Zoonoses, diseases affecting both humans and animals, can exert tremendous pressures on human and veterinary health systems, particularly in resource limited countries. Anthrax is one such zoonosis of concern and is a disease requiring greater public health attention in Nigeria. Here we describe the genetic diversity of Bacillus anthracis in Nigeria and compare it to Chad, Cameroon and a broader global dataset based on the multiple locus variable number tandem repeat (MLVA-25) genetic typing system. Nigerian B. anthracis isolates had identical MLVA genotypes and could only be resolved by measuring highly mutable single nucleotide repeats (SNRs). The Nigerian MLVA genotype was identical or highly genetically similar to those in the neighboring countries, confirming the strains belong to this unique West African lineage. Interestingly, sequence data from a Nigerian isolate shares the anthrose deficient genotypes previously described for strains in this region, which may be associated with vaccine evasion. Strains in this study were isolated over six decades, indicating a high level of temporal strain stability regionally. Ecological niche models were used to predict the geographic distribution of the pathogen for all three countries. We describe a west-east habitat corridor through northern Nigeria extending into Chad and Cameroon. Ecological niche models and genetic results show B. anthracis to be ecologically established in Nigeria. These findings expand our understanding of the global B. anthracis population structure and can guide regional anthrax surveillance and control planning.


Subject(s)
Anthrax/microbiology , Anthrax/veterinary , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Cattle Diseases/microbiology , Genetic Variation , Animals , Anthrax/epidemiology , Bacillus anthracis/classification , Bacterial Typing Techniques , Cameroon/epidemiology , Cattle , Chad/epidemiology , Genotype , Humans , Minisatellite Repeats , Molecular Sequence Data , Nigeria/epidemiology , Phylogeny
18.
Vector Borne Zoonotic Dis ; 14(8): 576-83, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25072988

ABSTRACT

Early studies confirmed Bacillus anthracis in emesis and feces of flies under laboratory conditions, but there is little empirical field evidence supporting the roles of flies in anthrax transmission. We collected samples during outbreaks of anthrax affecting livestock and native and exotic wildlife on two ranches in West Texas (2009-2010). Sampling included animal carcasses, maggots, adult flies feeding on or within several meters of carcasses, and leaves from surrounding vegetation. Microbiology and PCR were used to detect B. anthracis in the samples. Viable B. anthracis and/or PCR-positive results were obtained from all represented sample types. Genetic analysis of B. anthracis samples using multilocus variable number tandem repeat analysis (MLVA) confirmed that each ranch represented a distinct genetic lineage. Within each ranch, we detected the same genotype of B. anthracis from carcasses, maggots, and adult flies. The results of this study provide evidence supporting a transmission cycle in which blowflies contaminate vegetation near carcasses that may then infect additional browsing animals during anthrax outbreaks in the shrubland environment of West Texas.


Subject(s)
Anthrax/transmission , Anthrax/veterinary , Bacillus anthracis/isolation & purification , Diptera/microbiology , Disease Outbreaks/veterinary , Livestock/microbiology , Ruminants/microbiology , Animals , Anthrax/epidemiology , Bacillus anthracis/genetics , Genetic Variation , Genotype , Insect Vectors/physiology , Plant Leaves/microbiology , Texas/epidemiology
19.
J AOAC Int ; 96(2): 392-8, 2013.
Article in English | MEDLINE | ID: mdl-23767365

ABSTRACT

The RAZOR EX Anthrax Air Detection System was validated in a collaborative study for the detection of Bacillus anthracis in aerosol collection buffer. Phosphate-buffered saline was charged with 1 mg/mL standardized dust to simulate an authentic aerosol collection sample. The dust-charged buffer was spiked with either B. anthracis Ames at 2000 spores/mL or Bacillus cereus at 20 000 spores/mL. Twelve collaborators participated in the study, with four collaborators at each of three sites. Each collaborator tested 12 replicates of B. anthracis in dust-charged buffer and 12 replicates of B. cereus in dust-charged buffer. All samples sets were randomized and blind-coded. All collaborators produced valid data sets (no collaborators displayed systematic errors) and there was only one invalid data point. After unblinding, the analysis revealed a cross-collaborator probability of detection (CPOD) of 1.00 (144 positive results from 144 replicates, 95% confidence interval 0.975-1.00) for the B. anthracis samples and a CPOD of 0.00 (0 positive results from 143 replicates, 95% confidence interval 0.00-0.0262) for the B. cereus samples. These data meet the requirements of AOAC Standard Method Performance Requirement 2010.003, developed by the Stakeholder Panel on Agent Detection Assays.


Subject(s)
Aerosols/analysis , Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Bacteriological Techniques/standards , Spores, Bacterial/isolation & purification , Bacteriological Techniques/methods , Dust , Humans , Reproducibility of Results , Sensitivity and Specificity
20.
J Wildl Dis ; 49(4): 786-801, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24502707

ABSTRACT

Although antemortem approaches in wildlife disease surveillance are common for most zoonoses, they have been used infrequently in anthrax surveillance. Classically, anthrax is considered a disease with extremely high mortality. This is because anthrax outbreaks are often detected ex post facto through wildlife or livestock fatalities or spillover transmission to humans. As a result, the natural prevalence of anthrax infection in animal populations is largely unknown. However, in the past 20 yr, antemortem serologic surveillance in wildlife has indicated that not all species exposed succumb to infection, and anthrax exposure may be more widespread than originally appreciated. These studies brought about a multitude of new questions, many of which can be addressed by increased antemortem serologic surveillance in wildlife populations. To fully understand anthrax transmission dynamics and geographic extent, it is important to identify exposure in wildlife hosts and associated factors and, in turn, understand how these influences may drive environmental reservoir dynamics and concurrent disease risk in livestock and humans. Here we review our current understanding of the serologic response to anthrax among wildlife hosts and serologic diagnostic assays used to augment traditional postmortem anthrax surveillance strategies. We also provide recommendations for the use of serology and sentinel species surveillance approaches in anthrax research and management.


Subject(s)
Animals, Wild , Anthrax/veterinary , Animals , Anthrax/diagnosis , Anthrax/epidemiology , Anthrax/immunology , Antibodies, Bacterial/isolation & purification , Global Health
SELECTION OF CITATIONS
SEARCH DETAIL
...