Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Int J Pharm ; 628: 122262, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36191815
2.
Int J Pharm ; 623: 121906, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35716976

ABSTRACT

Ion pairing is a potential strategy used to increase the partition and permeation of ionisable drug molecules. This work outlines the process of identifying, selecting and testing potential counter ions for diclofenac (DF). Three screening criteria were considered in the initial selection process. The first, toxicity, was used to eliminate counter ion candidates that could not be used in topical formulations. The second related to the balancing of charges. As DF is a free acid in its unionised state, counter ions should be of a basic character. Finally, molecular size, as represented by molecular mass (Da), was used. Because of the impact on ion pair formation, the counter ion was required to have a lower molecular weight than diclofenac. Basic amino acids L-Arginine, L-Histidine, L-Lysine and their salts were chosen. The selection process concluded with Partition Coefficient (PC) studies. These were used to identify any counter ions able to interact electrostatically with the ionised DF, enabling the 'neutral' ion pair to partition from an aqueous into an organic layer. Permeation studies using porcine skin were performed to test the efficacy of any selected counter ion. These preliminary studies suggest that amino acids may be used as counter ions to increase the partition and permeation of ionisable drugs.


Subject(s)
Amino Acids , Diclofenac , Acids , Administration, Cutaneous , Amino Acids/metabolism , Animals , Ions/chemistry , Skin/metabolism , Swine
3.
Int J Pharm ; 614: 121447, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34998922

ABSTRACT

For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.


Subject(s)
Epidermis , Skin , Animals , Calorimetry, Differential Scanning , Excipients/metabolism , Humans , Skin/metabolism , Skin Absorption , Swine
4.
Drug Deliv Transl Res ; 12(4): 805-815, 2022 04.
Article in English | MEDLINE | ID: mdl-33886076

ABSTRACT

Amitriptyline, administered orally, is currently one of the treatment options for the management of neuropathic pain and migraine. Because of the physicochemical properties of the molecule, amitriptyline is also a promising candidate for delivery as a topical analgesic. Here we report the dermal delivery of amitriptyline from a range of simple formulations. The first stage of the work required the conversion of amitriptyline hydrochloride to the free base form as confirmed by nuclear magnetic resonance (NMR). Distribution coefficient values were measured at pH 6, 6.5, 7, and 7.4. Solubility and stability of amitriptyline were assessed prior to conducting in vitro permeation and mass balance studies. The compound demonstrated instability in phosphate-buffered saline (PBS) dependent on pH. Volatile formulations comprising of isopropyl alcohol (IPA) and isopropyl myristate (IPM) or propylene glycol (PG) were evaluated in porcine skin under finite dose conditions. Compared with neat IPM, the IPM:IPA vehicles promoted 8-fold and 5-fold increases in the amount of amitriptyline that permeated at 24 h. Formulations containing PG also appear to be promising vehicles for dermal delivery of amitriptyline, typically delivering higher amounts of amitriptyline than the IPM:IPA vehicles. The results reported here suggest that further optimization of topical amitriptyline formulations should be pursued towards development of a product for clinical investigational studies.


Subject(s)
Analgesia , Skin Absorption , Administration, Cutaneous , Amitriptyline/metabolism , Analgesics , Animals , Excipients , Propylene Glycol/chemistry , Skin/metabolism , Swine
5.
Pharmaceutics ; 13(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202939

ABSTRACT

Ion pairing is a strategy used to increase the permeation of topically applied ionised drugs. Formation occurs when the electrostatic energy of attraction between oppositely charged ions exceeds their mean thermal energy, making it possible for them to draw together and attain a critical distance. These ions then behave as a neutral species, allowing them to partition more readily into a lipid environment. Partition coefficient studies may be used to determine the potential of ions to pair and partition into an organic phase but cannot be relied upon to predict flux. Early researchers indicated that temperature, size of ions and dielectric constant of the solvent system all contributed to the formation of ion pairs. While size is important, this may be outweighed by improved lipophilicity of the counter ion due to increased length of the carbon chain. Organic counter ions are more effective than inorganic moieties in forming ion pairs. In addition to being used to increase permeation, ion pairs have been used to control and even prevent permeation of the active ingredient. They have also been used to stabilise solid lipid nanoparticle formulations. Ion pairs have been used in conjunction with permeation enhancers, and permeation enhancers have been used as counter ions in ion pairing. This review attempts to show the various ways in which ion pairs have been used in drug delivery via the skin. It also endeavours to extract and consolidate common approaches in order to inform future formulations for topical and transdermal delivery.

6.
Pharmaceutics ; 13(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069268

ABSTRACT

In vivo human studies are considered to be the "gold standard" when investigating (trans)dermal delivery of actives. Previously, we reported the effects of a range of vehicles on the delivery of niacinamide (NIA) using conventional Franz cell studies. In the present work, dermal delivery of NIA was investigated in vivo in human subjects using confocal Raman spectroscopy (CRS) and tape stripping (TS). The vehicles investigated included propylene glycol (PG), Transcutol® P (TC), binary combinations of PG with oleic acid (OA) or linolenic acid (LA) and a ternary system comprising of TC, caprylic/capric triglyceride (CCT) and dimethyl isosorbide (DMI). For the CRS studies, higher area under curve (AUC) values for NIA were observed for the PG:LA binary system compared with PG, TC and TC:CCT:DMI (p < 0.05). A very good correlation was found between the in vitro cumulative permeation of NIA and the AUC values from Raman intensity depth profiles, with a Pearson correlation coefficient (R2) of 0.84. In addition, an excellent correlation (R2 = 0.97) was evident for the signal of the solvent PG and the active. CRS was also shown to discriminate between NIA in solution versus crystalline NIA. The findings confirm that CRS is emerging as a powerful approach for dermatopharmacokinetic studies of both actives and excipients in human.

7.
Int J Pharm ; 586: 119538, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32540347

ABSTRACT

Methadone appears to be a promising candidate for pain management. Previously, we conducted a comprehensive characterization study of methadone base and evaluated the dermal delivery of methadone from various neat solvents. Four solvents, namely d-limonene (LIM), ethyl oleate (EO), Transcutol® P (TC) and octyl salicylate (OSAL), were identified as the optimal neat solvents for skin delivery of the compound. To explore further approaches to improve methadone permeation, the present work investigated a range of binary and ternary vehicles. In vitro permeation studies in porcine skin confirmed that binary systems delivered significantly higher (p < 0.05) amounts of methadone through the skin compared with neat solvents. The highest skin permeation was observed for formulations composed of propylene glycol (PG) and TC. Nine formulations were subsequently examined in human skin. A good correlation (r2 = 0.80) for methadone permeation was obtained between porcine ear skin and human skin data. Solvent uptake studies indicated that the presence of PG not only increased methadone permeation but also TC permeation. The drug appears to "track" the permeation of TC. Future studies will expand further the range of potential vehicles for optimal delivery of the drug, that will ultimately to be investigated in clinical studies.


Subject(s)
Analgesics, Opioid/administration & dosage , Drug Delivery Systems , Methadone/administration & dosage , Solvents/chemistry , Administration, Cutaneous , Analgesics, Opioid/pharmacokinetics , Animals , Excipients/chemistry , Female , Humans , Methadone/pharmacokinetics , Propylene Glycol/chemistry , Skin/metabolism , Skin Absorption , Swine
8.
Pharmaceutics ; 11(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835478

ABSTRACT

Niacinamide (NIA) is the amide form of vitamin B3 and has been widely used in pharmaceutical and personal care formulations. Previously, we reported a comparative study of NIA permeation from neat solvents using the Skin Parallel Artificial Membrane Permeability Assay (PAMPA) and mammalian skin. A good correlation between NIA permeation in the different models was found. In the present work, ten binary and ternary systems were evaluated for their ability to promote NIA delivery in the Skin PAMPA model, porcine skin and human epidermis. Penetration enhancement was evident for binary systems composed of propylene glycol and fatty acids in human skin studies. However, propylene glycol and oleic acid did not promote enhancement of NIA compared with other systems in the Skin PAMPA model. A good correlation was obtained for permeation data from Skin PAMPA and porcine skin. However, data from the Skin PAMPA model and from human skin could only be correlated when the PG-fatty acid systems were excluded. These findings add to our knowledge of the potential applications of Skin PAMPA for screening dermal/transdermal preparations.

9.
Pharmaceutics ; 11(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652587

ABSTRACT

Terbinafine (TBF) is commonly used in the management of fungal infections of the skin because of its broad spectrum of activity. Currently, formulations containing the free base and salt form are available. However, there is only limited information in the literature about the physicochemical properties of this drug and its uptake by the skin. In this work, we conducted a comprehensive characterisation of TBF, and we also examined its percutaneous absorption in vitro in porcine skin. TBF-free base was synthesised from the hydrochloride salt by a simple proton displacement reaction. Both the free base and salt form were further analysed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Delivery of TBF-free base in excised porcine skin was investigated from the following solvents: Isopropyl myristate (IPM), propylene glycol monolaurate (PGML), Transcutol® (TC), propylene glycol (PG), polyethylene glycol 200 (PEG 200), oleic acid (OL), ethanol (EtOH), and isopropyl alcohol (IPA). Permeation and mass balance studies confirmed that PG and TC were the most efficacious vehicles, delivering higher amounts of TBF-free base to the skin compared with a commercial gel (p < 0.05). These preliminary results are promising and will inform the development of more complex formulations in future work.

10.
Pharmaceutics ; 11(10)2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31581625

ABSTRACT

The use of methadone for the management of pain has received great interest in recent years. Currently, oral and intravenous formulations are available for clinical use. Dermal delivery represents an attractive alternative route of administration for this drug as it is associated with comparatively fewer side effects. The first stage of the work was the preparation of methadone free base as this form of the drug is expected to permeate the skin to a greater extent than the hydrochloride salt. Subsequently the molecule was characterized with Nuclear Magnetic Resonance (NMR) and thermal analysis, the distribution coefficient was determined and solubility studies were conducted in a range of solvents. In vitro permeation and mass balance studies were conducted under finite dose conditions (5 µL/cm2) in porcine skin. The results confirmed the more favorable penetration of methadone free base compared with the salt. The highest cumulative amount of methadone (41 ± 5 µg/cm2) permeated from d-limonene (LIM). Ethyl oleate (EO), Transcutol® P (TC) and octyl salicylate (OSAL) also appear to be promising candidate components of dermal formulations for methadone base. Future work will focus on further formulation optimization with the objective of progressing to evaluation of prototype dosage forms in clinical trials.

11.
Pharmaceutics ; 11(6)2019 May 28.
Article in English | MEDLINE | ID: mdl-31141993

ABSTRACT

In vitro permeation studies using nail clippings or nail plates are commonly used in the development of transungual formulations. However, there are ethical, safety and cost issues associated with sourcing such tissues. Herein, we describe a preliminary approach is described for the design and manufacture of a human nail model surrogate based on 3D printing. To evaluate these 3D printed constructs, nails were mounted in conventional glass Franz cells and a commercial antifungal lacquer formulation containing ciclopirox olamine was applied daily to the surrogate printed surfaces for a period of 14 days. On days 8 and 14, the surfaces of the 3D printed nails were washed with ethanol to remove excess formulation. Confocal Raman spectroscopy (CRS) was used to profile the drug in the 3D printed nail. At the end of the Franz cell studies, no drug was observed in the receptor phase. CRS studies confirmed penetration of the active into the model nails with reproducible depth profiles. Our ongoing work is focused on synthesising commercial and non-commercial printable resins that can replicate the physical and chemical characteristics of the human nail. This will allow further evaluation of actives for ungual therapy and advance the development of the surrogate nail tissue model.

12.
Int J Pharm ; 556: 142-149, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30529662

ABSTRACT

The in vitro skin penetration of pharmaceutical or cosmetic ingredients is usually assessed in human or animal tissue. However, there are ethical and practical difficulties associated with sourcing these materials; variability between donors may also be problematic when interpreting experimental data. Hence, there has been much interest in identifying a robust and high throughput model to study skin permeation that would generate more reproducible results. Here we investigate the permeability of a model active, niacinamide (NIA), in (i) conventional vertical Franz diffusion cells with excised human skin or porcine skin and (ii) a recently developed Parallel Artificial Membrane Permeation Assay (PAMPA) model. Both finite and infinite dose conditions were evaluated in both models using a series of simple NIA solutions and one commercial preparation. The Franz diffusion cell studies were run over 24 h while PAMPA experiments were conducted for 2.5 h. A linear correlation between both models was observed for the cumulative amount of NIA permeated in tested models under finite dose conditions. The corresponding correlation coefficients (r2) were 0.88 for porcine skin and 0.71 for human skin. These results confirm the potential of the PAMPA model as a useful screening tool for topical formulations. Future studies will build on these findings and expand further the range of actives investigated.


Subject(s)
Membranes, Artificial , Models, Biological , Niacinamide/pharmacokinetics , Skin Absorption , Administration, Cutaneous , Animals , High-Throughput Screening Assays/methods , Humans , Niacinamide/administration & dosage , Permeability , Reproducibility of Results , Species Specificity , Swine , Vitamin B Complex/administration & dosage , Vitamin B Complex/pharmacokinetics
13.
Mol Pharm ; 16(1): 359-370, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30525649

ABSTRACT

Drug crystallization on and in the skin has been reported following application of topical or transdermal formulations. This study explored novel probe-based approaches including localized nanothermal analysis (nano-TA) and photothermal microspectroscopy (PTMS) to investigate and locate drug crystals in the stratum corneum (SC) of porcine skin following application of simple ibuprofen (IBU) formulations. We also conducted in vitro skin permeation studies and tape stripping. The detection of drug crystals in the SC on tape strips was confirmed using localized nano-TA, based on the melting temperature of IBU. The melting of IBU was also evident as indicated by a double transition and confirmed the presence of drug crystals in the SC. The single point scans of PTMS on the tape strips allowed collection of the photothermal FTIR spectra of IBU, confirming the existence of drug crystals in the skin. The combined methods also indicated that drug crystallized in the SC at a depth of ∼4-7 µm. Future studies will examine the potential of these techniques to probe crystallization of other commonly used actives in topical and transdermal formulations.


Subject(s)
Crystallization/methods , Epidermis/metabolism , Microspectrophotometry/methods , Animals , Ibuprofen/chemistry , Ibuprofen/metabolism , Skin Absorption , Spectroscopy, Fourier Transform Infrared , Swine
14.
Int J Pharm ; 549(1-2): 317-324, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30055301

ABSTRACT

Dandruff is a common condition, affecting up to half the global population of immunocompetent adults at some time during their lives and it has been highly correlated with the over-expression of the fungus Malassezia spp. Climbazole (CBZ) is used as an antifungal and preservative agent in many marketed formulations for the treatment of dandruff. While the efficacy of CBZ in vitro and in vivo has previously been reported, limited information has been published about the uptake and deposition of CBZ in the skin. Hence, our aim was to investigate the skin permeation of CBZ as well as the influence of various solvents on CBZ skin delivery. Four solvents were selected for the permeability studies of CBZ, namely propylene glycol (PG), octyl salicylate (OSal), Transcutol® P (TC) and polyethylene glycol 200 (PEG). The criteria for selection were based on their wide use as excipients in commercial formulations, their potential to act as skin penetration enhancers and their favourable safety profiles. 1% (w/v) solutions of CBZ were applied under infinite and finite dose conditions using Franz type diffusion cells to human and porcine skin. In line with the topical use of CBZ as an antidandruff agent, comparatively low amounts of CBZ penetrated across the skin barrier (<1% of the applied dose of CBZ). Finite dose studies resulted in a higher extraction of CBZ from human skin compared with infinite dose studies (p < 0.05). CBZ was also taken up to a higher extent in porcine skin (>7-fold) compared with human skin (p < 0.05). Nevertheless, no statistical differences were observed in the amounts that permeated across the different membranes. These preliminary results confirm the potential of simple formulations of CBZ to target the outer layers of the epidermis. The PG and OSal formulations appear to be promising vehicles for CBZ in terms of overall skin extraction and penetration. Future work will expand the range of vehicles studied and explore the reasons underlying the retention of CBZ in the outer layers of the skin.


Subject(s)
Antifungal Agents/administration & dosage , Imidazoles/administration & dosage , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Antifungal Agents/adverse effects , Drug Compounding , Ethylene Glycols/chemistry , Humans , Imidazoles/chemistry , Permeability , Propylene Glycol/chemistry , Salicylates/chemistry , Solvents/chemistry , Sus scrofa
15.
Eur J Pharm Sci ; 121: 59-64, 2018 08 30.
Article in English | MEDLINE | ID: mdl-29746912

ABSTRACT

Anthramycin (ANT) is a member of the pyrolobenzodiazepine family and is a potent cytotoxic agent. Previously, we reported the topical delivery of ANT from a range of solvents that may also act as skin penetration enhancers (SPEs). The skin penetration and uptake was monitored for simple solutions of ANT in propylene glycol (PG), dipropylene glycol (DiPG), Transcutol P (TC), isopropyl myristate (IPM), propylene glycol monocaprylate (PGMC) and propylene glycol monolaurate (PGML). The amounts of PG, DiPG and TC that were taken up by, and that penetrated the skin were also measured, with a clear dependence of ANT penetration on the rate and extent of PG and TC permeation. The present work investigates ANT skin delivery from a range of binary and ternary systems to determine any potential improvement in skin uptake compared with earlier results for the neat solvents. Following miscibility and stability studies a total of eight formulations were taken forward for evaluation in human skin in vitro. Binary systems of PG and water did not result in any skin permeation of ANT. Combining PG with either PGMC or PGML did promote skin penetration of ANT but no significant improvement was evident compared with PG alone. More complex ternary systems based on PG, DiPG, PGMC, PGML and water also did not show significant improvements on ANT permeation, compared with single solvents. Total skin penetration and retention of ANT ranged from 1 to 6% across all formulations studied. Where ANT was delivered to the receptor phase there were also high amounts of PG permeation with >50% and ~35% PG present for the binary systems and ternary vehicles, respectively. These findings along with our previous paper confirm PG as a suitable solvent / SPE for ANT either alone or in combination with PGML or PGMC. The results also underline the necessity for empirical testing to determine whether or not a vehicle is acting as a SPE for a specific active in a topical formulation.


Subject(s)
Anthramycin/administration & dosage , Antibiotics, Antineoplastic/administration & dosage , Skin Absorption , Solvents/administration & dosage , Administration, Cutaneous , Anthramycin/chemistry , Antibiotics, Antineoplastic/chemistry , Caprylates/chemistry , Humans , Laurates/chemistry , Propylene Glycol/chemistry , Propylene Glycols/chemistry , Skin/metabolism , Solvents/chemistry , Water/chemistry
16.
Eur J Pharm Sci ; 104: 188-195, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28373034

ABSTRACT

Anthramycin (ANT) was the first pyrrolobenzodiazepine (PBD) molecule to be isolated, and is a potent cytotoxic agent. Although the PBD family has been investigated for use in systemic chemotherapy, their application in the management of actinic keratoses (AK) or skin cancer has not been investigated to date. In the present work, anthramycin (ANT) was selected as a model PBD compound, and the skin penetration of the molecule was investigated using conventional Franz diffusion cells. Finite dose permeation studies of ANT were performed using propylene glycol (PG), 1,3-butanediol (BD), dipropylene glycol (DiPG), Transcutol P® (TC), propylene glycol monocaprylate (PGMC), propylene glycol monolaurate (PGML) and isopropyl myristate (IPM). The skin penetration of BD, DiPG, PG and TC was also measured. Penetration of ANT through human skin was evident for TC, PG and PGML with the active appearing to "track" the permeation of the vehicle in the case of TC and PG. Deposition of ANT in skin could be correlated with skin retention of the vehicle in the case of IPM, PGMC and PGML. These preliminary findings confirm the ability of ANT to penetrate human skin and, given the potency of the molecule, suggest that further investigation is justified. Additionally, the findings emphasise the critical importance of understanding the fate of the excipient for the rational design of topical formulations.


Subject(s)
Anthramycin/administration & dosage , Solvents/chemistry , Administration, Topical , Chromatography, Gas , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Humans
17.
Eur J Pharm Biopharm ; 111: 16-25, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27845181

ABSTRACT

Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm-1) containing the carboxylate (COO-) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO- asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.


Subject(s)
Diclofenac/chemistry , Epidermis/drug effects , Skin/drug effects , Spectroscopy, Fourier Transform Infrared , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chromatography, High Pressure Liquid , Cluster Analysis , Crystallization , Dimethyl Sulfoxide/chemistry , Inflammation , Light , Multivariate Analysis , Pain , Principal Component Analysis , Propylene Glycol/chemistry , Swine , Thermodynamics
18.
Int J Pharm ; 514(1): 52-57, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27260130

ABSTRACT

Topical formulations aim to target the skin for a variety of cosmetic, protective or therapeutic needs. Despite the use of creams and ointments over the millennia, the bioavailability of actives from topical preparations remains quite low, often not exceeding 1-2% of the applied dose. In this review we examine the reasons underlying the poor performance of topical preparations. We also outline a rational approach, based on Fick's laws of diffusion, to develop advanced topical formulations. Methodologies which are currently used in research and development are critically examined and the importance of understanding the fate of the vehicle as well as the active is emphasised. Advanced topical formulation development will also be facilitated by emerging and sophisticated analytical techniques that are able to probe real time delivery of actives to the skin. A good understanding of the underlying physical chemistry of both the formulation and the skin is crucial in the development of optimised topical products.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Skin/drug effects , Administration, Cutaneous , Animals , Biological Availability , Chemistry, Pharmaceutical/methods , Cosmetics/administration & dosage , Cosmetics/chemistry , Diffusion , Ointments/administration & dosage , Ointments/chemistry , Skin Absorption
19.
Int J Pharm ; 506(1-2): 332-9, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27130367

ABSTRACT

Hexamidine diisethionate (HEX D) has been used for its biocidal actions in topical preparations since the 1950s. Recent data also suggest that it plays a beneficial role in skin homeostasis. To date, the extent to which this compound penetrates the epidermis has not been reported nor how its topical delivery may be modulated. In the present work we set out to characterise the interaction of HEX D with the skin and to develop a range of simple formulations for topical targeting of the active. A further objective was to compare the skin penetration of HEX D with its corresponding dihydrochloride salt (HEX H) as the latter has more favourable physicochemical properties for skin uptake. Candidate vehicles were evaluated by in vitro Franz cell permeation studies using porcine skin. Initially, neat solvents were investigated and subsequently binary systems were examined. The solvents and chemical penetration enhancers investigated included glycerol, dimethyl isosorbide (DMI), isopropyl alcohol (IPA), 1,2-pentanol (1,2-PENT), polyethylene glycol (PEG) 200, propylene glycol (PG), propylene glycol monolaurate (PGML) and Transcutol(®)P (TC). Of a total of 30 binary solvent systems evaluated only 10 delivered higher amounts of active into the skin compared with the neat solvents. In terms of topical efficacy, formulations containing PGML far surpassed all other solvents or binary combinations. More than 70% of HEX H was extracted from the skin following application in PG:PGML (50:50). Interestingly, the same vehicle effectively promoted skin penetration of HEX D but demonstrated significantly lower uptake into and through the skin (30%). The findings confirm the unpredictable nature of excipients on delivery of actives with reference to skin even where there are minor differences in molecular structures. We also believe that they underline the ongoing necessity for fundamental studies on the interaction of topical excipients with the skin.


Subject(s)
Drug Delivery Systems , Excipients/chemistry , Skin Absorption , Administration, Cutaneous , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Benzamidines/administration & dosage , Benzamidines/pharmacokinetics , Chemistry, Pharmaceutical/methods , Salts , Skin/metabolism , Solvents/chemistry , Swine
20.
Int J Pharm ; 505(1-2): 14-9, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27025294

ABSTRACT

Human skin remains the membrane of choice when conducting in vitro studies to determine dermal penetration of active pharmaceutical ingredients or xenobiotics. However there are ethical and safety issues associated with obtaining human tissue. For these reasons synthetic membranes, cell culture models or in silico predictive algorithms have been researched intensively as alternative approaches to predict dermal exposure in man. Porcine skin has also been recommended as an acceptable surrogate for topical or transdermal delivery research. Here we examine the in vitro permeation of a model active, ibuprofen, using human or porcine skin, as well as the Parallel Artificial Membrane Permeation Assay (PAMPA) model and silicone membrane. Finite dose studies were conducted in all models using commercial ibuprofen formulations and simple volatile ibuprofen solutions. The dose applied in the PAMPA model was also varied in order to determine the amount of applied formulation which best simulates typical amounts of topical products applied by patients or consumers. Permeation studies were conducted up to 6h for PAMPA and silicone and up to 48h for human and porcine skin. Cumulative amounts permeated at 6h were comparable for PAMPA and silicone, ranging from 91 to 136µg/cm(2) across the range of formulations studied. At 48h, maximum ibuprofen permeation in human skin ranged from 11 to 38µg/cm(2) and corresponding values in porcine skin were 59-81µg/cm(2). A dose of 1µL was confirmed as appropriate for finite dose studies in the PAMPA model. The formulation which delivered the greatest amount of ibuprofen in human skin was also significantly more efficient than other formulations when evaluated in the PAMPA model. The PAMPA model also discriminated between different formulation types (i.e. gel versus solution) compared with other models. Overall, the results confirm the more permeable nature of the PAMPA, silicone membrane and porcine tissue models to ibuprofen compared with human skin. Further finite dose studies to elucidate the effects of individual excipients on the barrier properties of the PAMPA model are needed to expand the applications of this model. The range of actives that are suitable for study using the model also needs to be delineated.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Ibuprofen/pharmacokinetics , Membranes, Artificial , Skin Absorption , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Chemistry, Pharmaceutical/methods , Dose-Response Relationship, Drug , Excipients/chemistry , Humans , Ibuprofen/administration & dosage , Models, Biological , Permeability , Silicones/chemistry , Skin/metabolism , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...