Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 591, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683228

ABSTRACT

BACKGROUND: Graphene oxide nanosheets (GONS) are recognized for their role in enhancing drug delivery and effectiveness in cancer treatment. With colon cancer being a prevalent global issue and the significant side effects associated with chemotherapy, the primary treatment for colon cancer alongside surgery, there is a critical need for novel therapeutic strategies to support patients in combating this disease. Hesperetin (HSP), a natural compound found in specific fruits, exhibits anti-cancer properties. The aim of this study is to investigate the effect of GONS on the LS174t colon cancer cell line. METHODS: In this study, an anti-cancer nano-drug was synthesized by creating a hesperetin-graphene oxide nanocomposite (Hsp-GO), which was subsequently evaluated for its efficacy through in vitro cell toxicity assays. Three systems were investigated: HSP, GONS, and HSP-loaded GONS, to determine their cytotoxic and pro-apoptotic impacts on the LS174t colon cancer cell line, along with assessing the expression of BAX and BCL2. The morphology and properties of both GO and Hsp-GO were examined using scanning electron microscopy (SEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). RESULTS: The Hsp-GO nanocomposite displayed potent cytotoxic and pro-apoptotic effects on LS174t colon cancer cells, outperforming individual treatments with HSP or GONS. Cell viability assays showed a significant decrease in cell viability with Hsp-GO treatment. Analysis of BAX and BCL2 expression revealed elevated BAX and reduced BCL2 levels in Hsp-GO treated cells, indicating enhanced apoptotic activity. Morphological analysis confirmed successful Hsp-GO synthesis, while structural integrity was supported by X-ray diffraction and FTIR analyses. CONCLUSIONS: These study highlight the potential of Hsp-GO as a promising anti-cancer nano-drug for colon cancer therapy.


Subject(s)
Colonic Neoplasms , Drug Delivery Systems , Graphite , Hesperidin , Graphite/chemistry , Graphite/pharmacology , Humans , Hesperidin/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Nanocomposites/chemistry , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...