Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 222: 116095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423186

ABSTRACT

Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.


Subject(s)
Breast Neoplasms , PPAR gamma , Female , Humans , PPAR gamma/genetics , PPAR gamma/metabolism , Aromatase/genetics , Aromatase/metabolism , Adipose Tissue/metabolism , Estrogens/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Adipogenesis
3.
Environ Toxicol Pharmacol ; 105: 104347, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38143042

ABSTRACT

Disruption of signalling mediated by the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is associated with risk of cancer, metabolic diseases, and endocrine disruption. The purpose of this study was to identify environmental chemicals acting as PPARγ antagonists. Data from the Tox21 PPARγ antagonism assay were replicated using a reporter system in HEK293 cells. Two quantitative structure-activity relationship (QSAR) models were developed, and five REACH-registered substances predicted positive were tested in vitro. Reporter assay results were consistent with Tox21 data since all conflicting results could be explained by assay interference. QSAR models showed good predictive performance, and follow-up experiments revealed two PPARγ antagonists out of three non-interfering chemicals. In conclusion, the developed QSAR models and follow-up experiments are important steps in the discovery of potential endocrine- and metabolism-disrupting chemicals.


Subject(s)
High-Throughput Screening Assays , Quantitative Structure-Activity Relationship , Humans , High-Throughput Screening Assays/methods , PPAR gamma/genetics , HEK293 Cells
4.
Animal Model Exp Med ; 6(4): 369-374, 2023 08.
Article in English | MEDLINE | ID: mdl-37602738

ABSTRACT

Inhaled chemicals can harm the airways. Different effects can result in distinct changes in respiratory patterns; the type of change indicates where and how the respiratory system is affected. Furthermore, changes in respiratory patterns may be detected at much lower substance concentrations than those that cause more serious effects, such as histopathological changes. Changes in respiratory patterns can be studied experimentally by monitoring the breathing of mice placed in plethysmographs and exposing head-out to the test substance. The method is well established; however, it is not known if training mice in being restrained in the plethysmograph could increase the quality of data collection. Here we report the results of training mice to be restrained in plethysmographs for 5 consecutive days, with respect to body weight, respiratory parameters, and time spent in the plethysmograph, before they are removed because of unstable breathing patterns. The mice tolerated the procedure better (measured by time in the plethysmograph) on the second day of training than the first day. Training did not change the breathing parameters between days. Breathing parameters stabilized within 5 min after the mice were placed in the plethysmographs on all days. There was an average of 3% weight loss between the first and last days of the training, indicating that the training procedure placed some strain on the animals. Training reduces the number of mice attempting to escape from the plethysmograph.


Subject(s)
Respiration , Respiratory Rate , Animals , Mice , Body Weight , Data Collection , Weight Loss
5.
Toxicology ; 495: 153612, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37558157

ABSTRACT

Exposure to spray-formulated products for car cabin detailing is a potential risk for asthma induction. With a focus on the asthma-related endpoints sensitisation and irritation of the lungs, we performed an occupational risk assessment based on requirements in the EU Chemical Agents Directive. We identified 71 such spray products available in Denmark. We identified ingredient substances in safety data sheets and screened for harmonised classifications of respiratory sensitisation and airway irritation. For respiratory sensitisation, we also applied quantitative structure-activity relationship (QSAR). We modelled the exposure during 15 min of work inside a car cabin, and determined the risk ratio of the products by further applying occupational exposure limits - mainly derived no-effect levels (DNELs) from the European Chemicals Agency (ECHA) set on respiratory irritation. Four substances had a harmonised classification for respiratory irritation (bronopol, 2-phenoxyethanol, 2-methoxypropanol, and butan-1-ol). Seven substances were positive in the QSAR model for respiratory sensitisation (monoethanolamine, bronopol, glycerol, methyl salicylate, benzoic acid, ammonium benzoate, and sodium benzoate). Two vinyl treatment products had a risk ratio > 1 based on the level of sodium benzoate and its DNEL set on respiratory irritation. Two products had risk ratios of 0.69 and 0.73, respectively, based on 2-methyl-2 H-isothiazol-3-one and its acute DNEL set on respiratory irritation. In conclusion, 10 substances that may pose a risk for asthma induction were identified in the products. Two of the 71 products had a risk ratio > 1, meaning they may pose an asthma-induction risk in the modelled exposure scenario and using respiratory irritation DNELs from ECHA.


Subject(s)
Asthma , Quantitative Structure-Activity Relationship , Humans , Automobiles , Sodium Benzoate , Asthma/chemically induced , Risk Assessment
6.
J Trace Elem Med Biol ; 79: 127235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285631

ABSTRACT

BACKGROUND: To protect from toxicity at supra-essential doses of selenium, it is important to determine dose levels at which adverse effects occur. METHODS: We identified relevant literature on the repeated dosage of selenium and extracted dose descriptors on reported endpoints, except on genotoxicity/carcinogenicity. RESULTS: Selenium forms with toxicological data were organic ones: selenomethionine, selenocystine/selenocysteine; and inorganic ones, including selenite (SeO32-), selenate (SeO42-), selenium sulphide (SeS2), selenide (Se2-) and selenium nanoparticles. Clinical signs of selenium toxicity in humans include a garlicky-smelling breath, hair loss, and nail changes. One human study showed increased mortality following daily ingestion of 300 µg Se per day for 5 years, equal to a lowest-observed-adverse-effect level (LOAEL) of ∼4.3 µg/kg bw/days. The corresponding no-observed-adverse-effect level (NOAEL) was ∼2.9 µg Se/kg bw/day. One study reported an increased risk of type 2 diabetes after ∼2.9 µg Se/kg bw/day, but other studies with similar doses found no increases in mortality or incidence of type 2 diabetes. NOAELs on affected body weight in animal studies were 0.24-1.2 mg Se/kg bw/day. Other endpoints of selenium toxicity in animals include hepatotoxicity with a NOAEL as low as 2 µg/kg bw/day in rats, as well as gastrointestinal, cardiovascular, and reproductive toxicities with NOAELs of 0.6 (gastrointestinal), 0.08, and 0.4 (cardiovascular) and ≥ 0.04 mg Se/kg bw/day (reproductive), respectively. CONCLUSIONS: Dose descriptors describing selenium toxicity were as low as 2-3 µg Se/kg bw/day.


Subject(s)
Diabetes Mellitus, Type 2 , Nanoparticles , Selenium , Humans , Rats , Animals , Selenium/toxicity , Selenious Acid , Selenocysteine , Nanoparticles/toxicity
7.
Nanotoxicology ; 17(4): 338-371, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37300873

ABSTRACT

This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.


Subject(s)
Nanostructures , Nanotubes, Carbon , Pneumonia , Animals , Lung , Soot/toxicity , Nanostructures/toxicity , Bronchoalveolar Lavage Fluid , Particle Size , Inhalation Exposure
8.
Basic Clin Pharmacol Toxicol ; 133(3): 265-278, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37312155

ABSTRACT

Inhalation studies are the gold standard for assessing the toxicity of airborne materials. They require considerable time, special equipment, and large amounts of test material. Intratracheal instillation is considered a screening and hazard assessment tool as it is simple, quick, allows control of the applied dose, and requires less test material. The particle-induced pulmonary inflammation and acute phase response in mice caused by intratracheal instillation or inhalation of molybdenum disulphide or tungsten particles were compared. End points included neutrophil numbers in bronchoalveolar lavage fluid, Saa3 mRNA levels in lung tissue and Saa1 mRNA levels in liver tissue, and SAA3 plasma protein. Acute phase response was used as a biomarker for the risk of cardiovascular disease. Intratracheal instillation of molybdenum disulphide or tungsten particles did not produce pulmonary inflammation, while molybdenum disulphide particles induced pulmonary acute phase response with both exposure methods and systemic acute phase response after intratracheal instillation. Inhalation and intratracheal instillation showed similar dose-response relationships for pulmonary and systemic acute phase response when molybdenum disulphide was expressed as dosed surface area. Both exposure methods showed similar responses for molybdenum disulphide and tungsten, suggesting that intratracheal instillation can be used for screening particle-induced acute phase response and thereby particle-induced cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Tungsten , Animals , Mice , Acute-Phase Reaction/chemically induced , RNA, Messenger
9.
Environ Toxicol Pharmacol ; 98: 104074, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724834

ABSTRACT

Tungsten is used in several applications and human exposure may occur. To assess its pulmonary toxicity, we exposed male mice to nose-only inhalation of tungsten particles at 9, 23 or 132 mg/m3 (Low, Mid and High exposure) (45 min/day, 5 days/week for 2 weeks). Increased genotoxicity (assessed by comet assay) was seen in bronchoalveolar (BAL) fluid cells at Low and High exposure. We measured acellular ROS production, and cannot exclude that ROS contributed to the observed genotoxicity. We saw no effects on body weight gain, pulmonary inflammation, lactate dehydrogenase or protein in BAL fluid, pathology of liver or kidney, or on sperm counts. In conclusion, tungsten showed non-dose dependent genotoxicity in the absence of inflammation and therefore interpreted to be primary genotoxicity. Based on genotoxicity, a Lowest Observed Adverse Effect Concentration (LOAEC) could be set at 9 mg/m3. It was not possible to establish a No Adverse Effect Concentration (NOAEC).


Subject(s)
Semen , Tungsten , Humans , Mice , Male , Animals , Tungsten/metabolism , Tungsten/pharmacology , Reactive Oxygen Species/metabolism , Semen/metabolism , DNA Damage , Inflammation/pathology , Inhalation Exposure/adverse effects , Bronchoalveolar Lavage Fluid , Lung
10.
Toxicology ; 485: 153428, 2023 02.
Article in English | MEDLINE | ID: mdl-36641057

ABSTRACT

Molybdenum disulphide (MoS2) is a constituent of many products. To protect humans, it is important to know at what air concentrations it becomes toxic. For this, we tested MoS2 particles by nose-only inhalation in mice. Exposures were set to 13, 50 and 150 mg MoS2/m3 (=8, 30 and 90 mg Mo/m3), corresponding to Low, Mid and High exposure. The duration was 30 min/day, 5 days/week for 3 weeks. Molybdenum lung-deposition levels were estimated based on aerosol particle size distribution measurements, and empirically determined with inductively coupled plasma-mass spectrometry (ICP-MS). Toxicological endpoints were body weight gain, respiratory function, pulmonary inflammation, histopathology, and genotoxicity (comet assay). Acellular reactive oxygen species (ROS) production was also determined. The aerosolised MoS2 powder had a mean aerodynamic diameter of 800 nm, and a specific surface area of 8.96 m2/g. Alveolar deposition of MoS2 in lung was estimated at 7, 27 and 79 µg/mouse and measured as 35, 101 and 171 µg/mouse for Low, Mid and High exposure, respectively. Body weight gain was lower than in controls at Mid and High exposure. The tidal volume was decreased with Low and Mid exposure on day 15. Increased genotoxicity was seen in bronchoalveolar lavage (BAL) fluid cells at Mid and High exposures. ROS production was substantially lower than for carbon black nanoparticles used as bench-mark, when normalised by mass. Yet if ROS of MoS2 was normalised by surface area, it was similar to that of carbon black, suggesting that a ROS contribution to the observed genotoxicity cannot be ruled out. In conclusion, effects on body weight gain and genotoxicity indicated that Low exposure (13 mg MoS2/m3, corresponding to 0.8 mg/m3 for an 8-hour working day) was a No Observed Adverse Effect Concentration (NOAEC,) while effects on respiratory function suggested this level as a Lowest Observed Adverse Effect Concentration (LOAEC).


Subject(s)
Molybdenum , Soot , Humans , Mice , Animals , Molybdenum/toxicity , Reactive Oxygen Species , Respiratory Aerosols and Droplets , Lung/pathology , Bronchoalveolar Lavage Fluid/chemistry , Weight Gain , Inhalation Exposure/adverse effects , Particle Size
11.
Nanotoxicology ; 16(6-8): 812-827, 2022.
Article in English | MEDLINE | ID: mdl-36480659

ABSTRACT

The inclusion of nanoparticles can increase the quality of certain products. One application is the inclusion of Zinc oxide (ZnO) nanoparticles in a glass coating matrix to produce a UV-absorbing coating for glass sheets. Yet, the question is whether the inclusion of ZnO in the matrix induces toxicity at low exposure levels. To test this, mice were given single intratracheal instillation of 1) ZnO powder (ZnO), 2) ZnO in a glass matrix coating in its liquid phase (ZnO-Matrix), and 3) the matrix with no ZnO (Matrix). Doses of ZnO were 0.23, 0.67, and 2 µg ZnO/mouse. ZnO Matrix doses had equal amounts of ZnO, while Matrix was adjusted to have an equal volume of matrix as ZnO Matrix. Post-exposure periods were 1, 3, or 28 d. Endpoints were pulmonary inflammation as bronchoalveolar lavage (BAL) fluid cellularity, genotoxicity in lung and liver, measured by comet assay, histopathology of lung and liver, and global gene expression in lung using microarrays. Neutrophil numbers were increased to a similar extent with ZnO and ZnO-Matrix at 1 and 3 d. Only weak genotoxicity without dose-response effects was observed in the lung. Lung histology showed an earlier onset of inflammation in material-exposed groups as compared to controls. Microarray analysis showed a stronger response in terms of the number of differentially regulated genes in ZnO-Matrix exposed mice as compared to Matrix only. Activated canonical pathways included inflammatory and cardiovascular ones. In conclusion, the pulmonary toxicity of ZnO was not changed by formulation in a liquid matrix for glass coating.


Subject(s)
Lung Diseases , Nanoparticles , Pneumonia , Zinc Oxide , Mice , Animals , Zinc Oxide/toxicity , Zinc Oxide/metabolism , Lung , Lung Diseases/metabolism , Pneumonia/pathology , Nanoparticles/toxicity , Bronchoalveolar Lavage Fluid
13.
Toxicology ; 477: 153261, 2022 07.
Article in English | MEDLINE | ID: mdl-35863487

ABSTRACT

Spray-formulated engine/brake cleaners and lubricating agents are widely used to maintain machines. The occupational exposure to their aerosols is evident. To assess the carcinogenic potential of these products, we identified such products available in the European Union (EU). We built a database with CAS numbers of 1) mono-constituent substances, and 2) multi-constituent-substances, and unknown-or-variable-composition,-complex-reaction-products-and-biological-materials (multi-constituent/UVCBs). The compositions of multi-constituent/UVCBs were unravelled with European Chemicals Agency (ECHA) registration dossiers. To identify carcinogenic potentials, we searched for 1) International Agency for Research on Cancer (IARC) classification; 2) Harmonised classifications in Annex VI to the EU classification, labelling and packaging (CLP) Regulation; and 3) whether they had a Danish Environmental Protection Agency advisory CLP self-classification based on quantitative structure-activity relationships (QSARs) for genotoxicity and carcinogenicity in the Danish (Q)SAR Database. In 82 products, we identified 332 mono-constituent substances and 44 multi-constituent/UVCBs. Six substances were either IARC 1 or 2B classified. Twelve mono-constituent substances and 22 multi-constituent/UVCBs had harmonised classifications as Carcinogenic Category 1A, 1B or 2, while nine substances fulfilled the QSAR-based advisory self-classification algorithms for mutagenicity or carcinogenicity. At the product level, 39 products contained substances of carcinogenic concern by either IARC, harmonised classification or QSAR. We conclude that in the investigated EU marketed spray-formulated engine/brake cleaners and lubricants, 24 of 332 mono-constituent substances and 28 of 44 multi-constituent/UVCBs had a carcinogenic potential. At the product level, 39 of 82 contained substances with an identified carcinogenic potential. Regulators and manufacturers can use this determination of carcinogenic potential to decrease occupational risk.


Subject(s)
Carcinogens , Quantitative Structure-Activity Relationship , Carcinogens/toxicity , European Union
14.
Environ Toxicol Pharmacol ; 95: 103939, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35908641

ABSTRACT

The rate of translocation of ingested nanoparticles (NPs) and how the uptake is affected by a food matrix are key aspects of health risk assessment. In this study, female Sprague Dawley rats (N = 4/group) received 0, 1.4, or 13 mg of cerium oxide (CeO2 NM-212) NPs/rat/day by gavage or in a chocolate spread snack 5 days/week for 1 or 2 weeks followed by 2 weeks of recovery. A dose and time-dependent uptake in the liver and spleen of 0.1-0.3 and 0.004-0.005 parts per million (ng/mg) of the total administered dose was found, respectively. There was no statistically significant difference in cerium concentration in the liver or spleen after gavage compared to snack dosing. Microscopy revealed indications of necrotic changes in the liver and decreased cellularity in white pulp in the spleen. The snack provided precise administration and a more human-relevant exposure of NPs and could improve animal welfare as alternative to gavage.


Subject(s)
Cerium , Nanoparticles , Administration, Oral , Animals , Cerium/toxicity , Female , Humans , Rats , Rats, Sprague-Dawley , Snacks , Tissue Distribution
15.
Toxicology ; 467: 153098, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35026344

ABSTRACT

Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited. Excretion of all three elements is both via faeces and urine. Molybdenum trioxide exerted pulmonary toxicity in a 2-year inhalation study in rats and mice with a lowest-observed-adverse-effect concentration (LOAEC) of 6.6 mg Mo/m3. Lithium chloride had a LOAEC of 1.9 mg Li/m3 after subacute inhalation in rabbits. Tungsten oxide nanoparticles resulted in a no-observed-adverse-effect concentration (NOAEC) of 5 mg/m3 after inhalation in hamsters. In another study, tungsten blue oxide had a LOAEC of 63 mg W/m3 in rats. Concerning genotoxicity, for molybdenum, the in vivo genotoxicity after inhalation remains unknown; however, there was some evidence of carcinogenicity of molybdenum trioxide. The data on the genotoxicity of lithium are equivocal, and one carcinogenicity study was negative. Tungsten seems to have a genotoxic potential, but the data on carcinogenicity are equivocal. In conclusion, for all three elements, dose descriptors for inhalation toxicity were identified, and the potential for genotoxicity and carcinogenicity was assessed.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Lithium Chloride/toxicity , Lung/drug effects , Molybdenum/toxicity , Neoplasms/chemically induced , Oxides/toxicity , Tungsten/toxicity , Animals , Body Burden , Carcinogenicity Tests , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Dose-Response Relationship, Drug , Humans , Inhalation Exposure , Lithium Chloride/pharmacokinetics , Lung/metabolism , Lung/pathology , Metal Nanoparticles , Molybdenum/pharmacokinetics , Mutagenicity Tests , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxides/pharmacokinetics , Risk Assessment , Tungsten/pharmacokinetics
16.
Drug Chem Toxicol ; 45(5): 2388-2397, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34455878

ABSTRACT

Some implantable medical devices contain silver. We aimed to assess at what amount implanted silver becomes toxic. Silver was elevated in bodily fluids and tissues surrounding silver-containing implants. Silver released from implants also distributes to blood and other tissues; there is evidence to suggest silver can pass the blood-brain-barrier. Silver can be deposited as nano-sized particles in various tissues. Such particles, in addition to silver, often contain other elements too, e.g., selenium and sulfur. Silver released from implants seems to stay in the body for long periods (years). Reported excretion pathways following implantation are urinary and fecal ones. Reported toxicological effects were virtually all local reactions surrounding the implants. Argyria is a blue-gray discoloration of the skin due to deposited silver granules. Localized argyria has been described after the implantation of acupuncture needles and silver-coated prostheses, although the presence of silver was tested only for and shown in the former. Other toxicological effects include local tissue reactivity and examples of neurotoxic and vascular effects. We did not include genotoxicity studies in the present publication as we recently evaluated silver to be genotoxic. Carcinogenicity studies were absent. We conclude that local toxicity of implanted silver can be foreseen in some situations.


Subject(s)
Argyria , Selenium , Humans , Prostheses and Implants , Silver/toxicity , Skin
17.
J Appl Toxicol ; 42(1): 130-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34247391

ABSTRACT

Exposure to spray cleaning products constitutes a potential risk for asthma induction. We set out to review whether substances in such products are potential inducers of asthma. We identified 101 spray cleaning products for professional use. Twenty-eight of their chemical substances were selected. We based the selection on (a) positive prediction for respiratory sensitisation in humans based on quantitative structure activity relationship (QSAR) in the Danish (Q)SAR Database, (b) positive QSAR prediction for severe skin irritation in rabbits and (c) knowledge on the substances' physico-chemical characteristics and toxicity. Combining the findings in the literature and QSAR predictions, we could group substances into four classes: (1) some indication in humans for asthma induction: chloramine, benzalkonium chloride; (2) some indication in animals for asthma induction: ethylenediaminetetraacetic acid (EDTA), citric acid; (3) equivocal data: hypochlorite; (4) few or lacking data: nitriloacetic acid, monoethanolamine, 2-(2-aminoethoxy)ethanol, 2-diethylaminoethanol, alkyldimethylamin oxide, 1-aminopropan-2-ol, methylisothiazolinone, benzisothiazolinone and chlormethylisothiazolinone; three specific sulphonates and sulfamic acid, salicylic acid and its analogue sodium benzoate, propane-1,2-diol, glycerol, propylidynetrimethanol, lactic acid, disodium malate, morpholine, bronopol and benzyl alcohol. In conclusion, we identified an asthma induction potential for some of the substances. In addition, we identified major knowledge gaps for most substances. Thus, more data are needed to feed into a strategy of safe-by-design, where substances with potential for induction of asthma are avoided in future (spray) cleaning products. Moreover, we suggest that QSAR predictions can serve to prioritise substances that need further testing in various areas of toxicology.


Subject(s)
Cosmetics/toxicity , Detergents/toxicity , Occupational Exposure/adverse effects , Respiratory System/drug effects , Soaps/toxicity , Animals , Asthma , Humans , Quantitative Structure-Activity Relationship , Respiratory System/physiopathology
18.
Environ Toxicol Pharmacol ; 87: 103702, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34252584

ABSTRACT

Potentially, the toxicity of multiwalled carbon nanotubes (MWCNTs) can be reduced in a safe-by-design strategy. We investigated if genotoxicity and pulmonary inflammation of MWCNTs from the same batch were lowered by a) reducing length and b) introducing COOH-groups into the structure. Mice were administered: 1) long and pristine MWCNT (CNT-long) (3.9 µm); 2) short and pristine CNT (CNT-short) (1 µm); 3) CNT modified with high ratio COOH-groups (CNT-COOH-high); 4) CNT modified with low ratio COOH-groups (CNT-COOH-low). MWCNTs were dosed by intratracheal instillation at 18 or 54 µg/mouse (∼0.9 and 2.7 mg/kg bw). Neutrophils numbers were highest after CNT-long exposure, and both shortening the MWCNT and addition of COOH-groups lowered pulmonary inflammation (day 1 and 28). Likewise, CNT-long induced genotoxicity, which was absent with CNT-short and after introduction of COOH groups. In conclusion, genotoxicity and pulmonary inflammation of MWCNTs were lowered, but not eliminated, by shortening the fibres or introducing COOH-groups.


Subject(s)
Lung/drug effects , Mutagens/toxicity , Nanotubes, Carbon/toxicity , A549 Cells , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Comet Assay , DNA Damage , Drug Design , Female , Humans , Inflammation/chemically induced , Inflammation/immunology , Lung/immunology , Mice, Inbred C57BL , Micronucleus Tests , Mutagens/chemistry , Nanotubes, Carbon/chemistry , Neutrophils/drug effects , Neutrophils/immunology
19.
J Trace Elem Med Biol ; 67: 126801, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34091241

ABSTRACT

BACKGROUND: Selenium is a trace element traditionally ingested either in its organic form via food or in its inorganic form through nutritional supplements, while selenium formulated as nanoparticles is a putative long-acting alternative. To understand the physiology and toxicology of the different selenium formulations, it is important to determine how their selenium content is absorbed, distributed, metabolised and excreted; therefore, we reviewed their biokinetics following oral exposure. METHODS: We retrieved and reviewed the literature on the absorption, distribution, metabolism, and excretion of oral exposure to different forms of selenium. RESULTS: Selenium in both the organic form (containing carbon to selenium chemical bonds) and the inorganic form is absorbed into the blood in humans. The mean normal blood level of many studies was 139 µg/L. There are indications that selenium from organic sources is more bioavailable than selenium from inorganic sources. Selenium is distributed throughout the body, including in breast milk. The elimination of selenium mainly involves the faecal and urinary pathways, whereas breath, saliva and hair are minor contributors. Urinary metabolites include trimethylselenium ions, selenosugars and Se-methylselenoneine. CONCLUSION: Selenium is absorbed to a high extent, and selenium from organic sources is more bioavailable than from inorganic sources. Selenium, as expected as an essential trace element, is distributed throughout the body. Selenium is extensively metabolised, and various excretion metabolites have been identified in both urine and breath, while some selenium is also excreted via faeces.


Subject(s)
Selenium Compounds , Selenium , Trace Elements , Dietary Supplements , Female , Humans
20.
Regul Toxicol Pharmacol ; 121: 104873, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33485927

ABSTRACT

Boron, often in the form of boric acid, is widely used as a flame retardant in insulation products, and although humans ingest boron through food, high exposure may lead to unwanted health effects. We assessed the toxicity of boric acid, borax and other forms of boron, after inhalation, dermal and oral exposure. After oral exposure, boron is absorbed over the gastrointestinal tract. Intact skin seems to pose a more effective barrier to boron than compromised skin. Boron excretion seems to mainly occur via the urine, although after skin exposure boron has been demonstrated in bile and gastrointestinal contents. Inhalation toxicity data are sparse, but one animal study showed reduced foetal weight after inhalation of cellulose that had a boric acid content of 20%. Skin exposure to boric acid has proven fatal in some cases, and the range of toxicity effects include abdominal as well as local effects on the skin. Fatalities from boric acid also have occurred after oral ingestion, and the endpoints in animals are weight loss and reproductive toxicity. Concerning genotoxicity studies, the overall picture indicates that boron-containing compounds are not genotoxic. There was no evidence of the carcinogenicity of boric acid in a 2-year study in mice.


Subject(s)
Boron Compounds/toxicity , Administration, Cutaneous , Administration, Inhalation , Administration, Oral , Animals , Humans , Inhalation Exposure , Mutagenicity Tests , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...