Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36980753

ABSTRACT

Tumor recurrence is a major problem during the treatment of giant cell tumors of bone (GCTB). We recently identified tumor cell-specific cytotoxic effects of bioactive glasses (BGs) toward neoplastic stromal cells derived from GCTB tissue (GCTSCs) in vitro. Since these data indicated a promising role of BGs in the adjuvant treatment of GCTBs, we aimed to investigate the transferability of the in vitro data into the more complex in vivo situation in the current study. We first analyzed the cytotoxicity of three different BGs in vitro by WST-1 assay after co-cultivation with primary GCTSC cell lines. The effects of BGs on tumor engraftment and growth were analyzed by chicken chorioallantoic membrane (CAM) assays and subsequent quantification of tumor take rates and tumor volumes. In vitro, all tested BGs displayed a cytotoxic effect on GCTSCs that was dependent on BG composition, concentration, and particle size. Comparable effects could be observed within the in vivo environment resulting in reduced tumor take rates and tumor volumes in BG-treated samples. These data indicate a possible clinical application of BGs in the context of GCTB therapy, mediating a reduction of recurrence rates with the simultaneous promotion of bone regeneration.

2.
ACS Appl Mater Interfaces ; 14(13): 15008-15020, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35316017

ABSTRACT

In this research work, the fabrication of biphasic composite implants has been investigated. Porous, commercially available pure Ti (50 vol % porosity and pore distributions of 100-200, 250-355, and 355-500 µm) has been used as a cortical bone replacement, while different composites based on a polymer blend (gelatin and alginate) and bioactive glass (BG) 45S5 have been applied as a soft layer for cartilage tissues. The microstructure, degradation rates, biofunctionality, and wear behavior of the different composites were analyzed to find the best possible coating. Experiments demonstrated the best micromechanical balance for the substrate containing 200-355 µm size range distribution. In addition, although the coating prepared from alginate presented a lower mass loss, the composite containing 50% alginate and 50% gelatin showed a higher elastic recovery, which entails that this type of coating could replicate the functions of the soft tissue in areas of the joints. Therefore, results revealed that the combinations of porous commercially pure Ti and composites prepared from alginate/gelatin/45S5 BG are candidates for the fabrication of biphasic implants not only for the treatment of osteochondral defects but also potentially for any other diseases affecting simultaneously hard and soft tissues.


Subject(s)
Gelatin , Titanium , Alginates/chemistry , Gelatin/chemistry , Glass/chemistry , Porosity , Prostheses and Implants , Titanium/chemistry
3.
Pharmaceutics ; 13(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683993

ABSTRACT

Even though antibiotic treatment remains one of the most common tools to handle bacterial infections, the excessive antibiotic concentration at the target site may lead to undesired effects. Aiming at the fabrication of antibiotic-free biomaterials for antibacterial applications, in this work, we propose the synthesis of gallium (III)-chitosan (Ga (III)-CS) complexes with six different gallium concentrations via an in situ precipitation method. Fourier Transform infrared spectroscopy indicated the chelation of chitosan with Ga (III) by peak shifts and changes in the relative absorbance of key spectral bands, while energy-dispersive X-ray spectroscopy indicated the homogenous distribution of the metal ions within the polymer matrix. Additionally, similar to CS, all Ga (III)-CS complexes showed hydrophobic behavior during static contact-angle measurements. The antibacterial property of the complexes against both Gram-negative and Gram-positive bacteria was positively correlated with the Ga (III) concentration. Moreover, cell studies confirmed the nontoxic behavior of the complexes against the human osteosarcoma cell line (MG-63 cells) and mouse embryonic fibroblasts cell line (MEFs). Based on the results of this study, new antibiotic-free antibacterial biomaterials based on Ga (III)-CS can be developed, expanding the scope of CS applications in the biomedical field.

4.
Materials (Basel) ; 14(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435364

ABSTRACT

Zein coatings were obtained by electrophoretic deposition (EPD) on commercially pure titanium substrates in an as-received state and after various chemical treatments. The properties of the zein solution, zeta potential and conductivity, at varying pH values were investigated. It was found that the zein content and the ratio of water to ethanol of the solution used for EPD, as well as the process voltage value and time, significantly influence the morphology of coatings. The deposits obtained from the solution containing 150 g/L and 200 g/L of zein and 10 vol % of water and 90 vol % of ethanol, about 4-5 µm thick, were dense and homogeneous. The effect of chemical treatment of the Ti substrate surface prior to EPD on coating adhesion to the substrate was determined. The coatings showed the highest adhesion to the as-received and anodized substrates due to the presence of a thick TiO2 layer on their surfaces and the presence of specific surface features. Coated titanium substrates showed slightly lower electrochemical corrosion resistance than the uncoated one in Ringer's solution. The coatings showed a well-developed surface topography compared to the as-received substrate, and they demonstrated hydrophilic nature. The present results provide new insights for the further development of zein-based composite coatings for biomedical engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...