Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Acoust Soc Am ; 138(6): 3864-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26723341

ABSTRACT

Structural damage on bridges presents a hazard to public safety and can lead to fatalities. This article contributes to the development of an alternative monitoring system for civil structures, based on passive measurements of seismic elastic waves. Cross-correlations of traffic noise recorded at geophone receiver pairs were found to be sufficiently stable for comparison and sensitive to velocity changes in the medium. As such velocity variations could be caused by damage, their detection would be valuable in structural health monitoring systems. A method, originally introduced for seismological applications and named Passive Image Interferometry, was used to quantify small velocity fluctuations in the medium and thereby observe structural changes. Evaluation of more than 2 months of continuous geophone recordings at a reinforced concrete bridge yielded velocity variations Δv/v in the range of -1.5% to +2.1%. The observed fluctuations correlate with associated temperature time series with a striking resemblance which is remarkable for two completely independent data sets. Using a linear regression approach, a relationship between temperature and velocity variations of on average 0.064% °C(-1) can be identified. This value corresponds well to other studies on concrete structures.


Subject(s)
Acoustics , Automobiles , Environmental Monitoring/methods , Noise, Transportation , Structure Collapse , Acoustics/instrumentation , Environmental Monitoring/instrumentation , Linear Models , Motion , Signal Processing, Computer-Assisted , Sound Spectrography , Temperature , Time Factors , Transducers
2.
J Acoust Soc Am ; 125(6): 3688-95, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507951

ABSTRACT

Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.

SELECTION OF CITATIONS
SEARCH DETAIL