Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 28: 743-754, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35664702

ABSTRACT

The arthritogenic alphavirus, chikungunya virus (CHIKV), is now present in almost 100 countries worldwide. Further spread is very likely, which raises public health concerns. CHIKV infections cause fever and arthralgia, which can be debilitating and last for years. Here, we describe a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). The vaccine candidate consists of two RNAs: a non-replicating mRNA encoding for the CHIKV nonstructural proteins, forming the replicase complex and a trans-replicon (TR) RNA encoding the CHIKV envelope proteins. The TR-RNA can be amplified by the replicase in trans, and small RNA amounts can induce a potent immune response. The TR-RNA was efficiently amplified by the CHIKV replicase in vitro, leading to high protein expression, comparable to that generated by a CHIKV infection. In addition, the taRNA system did not recombine to replication-competent CHIKV. Using a prime-boost schedule, the vaccine candidate induced potent CHIKV-specific humoral and cellular immune responses in vivo in a mouse model. Notably, mice were protected against a high-dose CHIKV challenge infection with two vaccine doses of only 1.5 µg RNA. Therefore, taRNAs are a promising safe and efficient vaccination strategy against CHIKV infections.

2.
Front Microbiol ; 11: 1179, 2020.
Article in English | MEDLINE | ID: mdl-32547533

ABSTRACT

Herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) are two closely related human alphaherpesviruses that persistently infect most adults worldwide and cause a variety of clinically important diseases. Herpesviruses are extremely well adapted to their hosts and interact broadly with cellular proteins to regulate virus replication and spread. However, it is incompletely understood how HSV-1 and VZV interact with the host proteome during productive infection. This study determined the temporal changes in virus and host protein expression during productive HSV-1 and VZV infection in the same cell type. Results demonstrated the temporally coordinated expression of HSV-1 and VZV proteins in infected cells. Analysis of the host proteomes showed that both viruses affected extracellular matrix composition, transcription, RNA processing and cell division. Moreover, the prominent role of epidermal growth factor receptor (EGFR) signaling during productive HSV-1 and VZV infection was identified. Stimulation and inhibition of EGFR leads to increased and decreased virus replication, respectively. Collectively, the comparative temporal analysis of viral and host proteomes in productively HSV-1 and VZV-infected cells provides a valuable resource for future studies aimed to identify target(s) for antiviral therapy development.

4.
Mol Ther ; 28(1): 119-128, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31624015

ABSTRACT

Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- over saRNA-encoded replicase to drive expression of the transreplicon is most likely attributable to its higher translational efficiency and lack of interference with cellular translation. Testing the novel taRNA system in mice, we observed that doses of influenza hemagglutinin antigen-encoding RNA as low as 50 ng were sufficient to induce neutralizing antibodies and mount a protective immune response against live virus challenge. These findings, together with a favorable safety profile, a simpler production process, and the universal applicability associated with this bipartite vector system, warrant further exploration of taRNA.


Subject(s)
Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/metabolism , Orthomyxoviridae Infections/prevention & control , RNA, Viral/genetics , Semliki forest virus/genetics , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cricetinae , Dogs , Female , Genetic Vectors , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Viral Replicase Complex Proteins/genetics
5.
Mol Ther Oncolytics ; 5: 11-19, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28480325

ABSTRACT

The conditionally replicating oncolytic adenovirus Delta24-RGD (Ad) is currently under investigation in clinical trials for glioblastoma, including in combination with temozolomide (TMZ), the standard chemotherapy for this tumor. Previously, we showed that the efficacy of Delta24-RGD in a murine model is primarily dependent on the virus-induced anti-tumor immune response. As observed with most chemotherapies, TMZ has pronounced immune-modulating effects. Here, we studied the combined effects of these treatments in a murine glioma model. In vitro, we observed a synergistic activity between Delta24-RGD and TMZ. In vivo, C57BL/6 mice bearing intracranial GL261 tumors were treated with TMZ for 5 days either prior to intratumoral Delta24-RGD injection (TMZ/Ad) or post virus injection (Ad/TMZ). Notably, the Ad/TMZ regimen led to similar tumoral CD8+ T cell influx as the virus-only treatment, but increased the ability of CD8+ T cells to specifically recognize the tumor cells. This was accompanied by improved survival. The TMZ/Ad regimen also improved survival significantly compared to controls, but not compared to virus alone. In this group, the influx of dendritic cells is impaired, followed by a significantly lower number of tumor-infiltrating CD8+ T cells and no recognition of tumor cells. Depletion of either CD4+ T cells or CD8+ T cells impaired the efficacy of Delta24-RGD, underscoring the role of these cells in therapeutic activity of the virus. Overall, we show that the addition of TMZ to Delta24-RGD treatment leads to a significant increase in survival and that the order of sequence of these treatments affects the CD8+T cell anti-tumor activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...