Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 10(11): eadi7598, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489363

ABSTRACT

Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently, nonlinear THz third-harmonic generation (THG) was shown to directly probe the collective degrees of freedoms of the superconducting condensate, including the Higgs mode. Here, we extend this idea to light-driven nonequilibrium states in superconducting La2-xSrxCuO4, establishing an optical pump-THz-THG drive protocol to access the transient superconducting order-parameter quench and recovering on few-picosecond timescales. We show in particular the ability of two-dimensional TH spectroscopy to disentangle the effects of optically excited quasiparticles from the pure order-parameter dynamics, which are unavoidably mixed in the pump-driven linear THz response. Benchmarking the gap dynamics to existing experiments shows the ability of driven THG spectroscopy to overcome these limitations in ordinary pump-probe protocols.

2.
Nat Commun ; 14(1): 1343, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906577

ABSTRACT

Cuprate high-Tc superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency. In this study, we report a new type of Fano resonance manifested by the nonlinear terahertz response of cuprate high-Tc superconductors, where we resolve both the amplitude and phase signatures of the Fano resonance. Our extensive hole-doping and magnetic field dependent investigation suggests that the Fano resonance may arise from an interplay between the superconducting fluctuations and the charge density wave fluctuations, prompting future studies to look more closely into their dynamical interactions.

3.
Phys Rev Lett ; 125(12): 120502, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016759

ABSTRACT

Identifying topological properties is a major challenge because, by definition, topological states do not have a local order parameter. While a generic solution to this challenge is not available yet, a broad class of topological states, namely, symmetry-protected topological (SPT) states, can be identified by distinctive degeneracies in their entanglement spectrum. Here, we propose and realize two complementary protocols to probe these degeneracies based on, respectively, symmetry-resolved entanglement entropies and measurement-based computational algorithms. The two protocols link quantum information processing to the classification of SPT phases of matter. They invoke the creation of a cluster state and are implemented on an IBM quantum computer. The experimental findings are compared to noisy simulations, allowing us to study the stability of topological states to perturbations and noise.

SELECTION OF CITATIONS
SEARCH DETAIL