Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Nat Commun ; 12(1): 2442, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903593

ABSTRACT

The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , MDS1 and EVI1 Complex Locus Protein/genetics , Ovarian Neoplasms/genetics , PAX8 Transcription Factor/genetics , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , MDS1 and EVI1 Complex Locus Protein/metabolism , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , PAX8 Transcription Factor/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
2.
JMIR Public Health Surveill ; 7(3): e23154, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33536159

ABSTRACT

BACKGROUND: Multimodal approaches have been shown to be a promising way to collect data on child development at high frequency, combining different data inputs (from phone surveys to signals from noninvasive biomarkers) to understand children's health and development outcomes more integrally from multiple perspectives. OBJECTIVE: The aim of this work was to describe an implementation study using a multimodal approach combining noninvasive biomarkers, social contact patterns, mobile surveying, and face-to-face interviews in order to validate technologies that help us better understand child development in poor countries at a high frequency. METHODS: We carried out a mixed study based on a transversal descriptive analysis and a longitudinal prospective analysis in Malawi. In each village, children were sampled to participate in weekly sessions in which data signals were collected through wearable devices (electrocardiography [ECG] hand pads and electroencephalography [EEG] headbands). Additionally, wearable proximity sensors to elicit the social network were deployed among children and their caregivers. Mobile surveys using interactive voice response calls were also used as an additional layer of data collection. An end-line face-to-face survey was conducted at the end of the study. RESULTS: During the implementation, 82 EEG/ECG data entry points were collected across four villages. The sampled children for EEG/ECG were 0 to 5 years old. EEG/ECG data were collected once a week. In every session, children wore the EEG headband for 5 minutes and the ECG hand pad for 3 minutes. In total, 3531 calls were sent over 5 weeks, with 2291 participants picking up the calls and 984 of those answering the consent question. In total, 585 people completed the surveys over the course of 5 weeks. CONCLUSIONS: This study achieved its objective of demonstrating the feasibility of generating data through the unprecedented use of a multimodal approach for tracking child development in Malawi, which is one of the poorest countries in the world. Above and beyond its multiple dimensions, the dynamics of child development are complex. It is the case not only that no data stream in isolation can accurately characterize it, but also that even if combined, infrequent data might miss critical inflection points and interactions between different conditions and behaviors. In turn, combining different modes at a sufficiently high frequency allows researchers to make progress by considering contact patterns, reported symptoms and behaviors, and critical biomarkers all at once. This application showcases that even in developing countries facing multiple constraints, complementary technologies can leverage and accelerate the digitalization of health, bringing benefits to populations that lack new tools for understanding child well-being and development.


Subject(s)
Cell Phone , Child Development , Data Collection/methods , Surveys and Questionnaires , Wearable Electronic Devices , Child, Preschool , Humans , Infant , Infant, Newborn , Longitudinal Studies , Malawi , Prospective Studies
3.
Transfus Med Hemother ; 47(2): 119-128, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32355471

ABSTRACT

BACKGROUND: Roughly one quarter of short-term temporary deferrals (STTD) of blood donors are low-hemoglobin deferrals (LHD), i.e. STTD due to a hemoglobin (Hb) value falling below a cutoff of 125 g/L for female and 135 g/L for male donors. Since voluntarily donating blood is a prosocial activity, donors may perceive deferral as social exclusion, which can cause social pain, decrease self-esteem, and lead to antisocial behavior. However, little is known about the causal impacts of LHD on donor return. STUDY DESIGN AND METHODS: We conducted a quasi-experiment with 80,060 donors invited to blood drives in the canton of Zurich, Switzerland, between 2009 and 2014. Within a narrow window of Hb values around the predetermined cutoff, the rate of LHD jumps discontinuously. This discontinuous jump allows us to quantify the causal effects of LHD on donor return, as it is uncorrelated with other unobserved factors that may also affect donor return. RESULTS: We found different behavioral reactions to LHD for female and male donors. Female donors do not react to the first LHD. However, after any repeated LHD, they are 13.53 percentage points (p <0.001) less likely to make at least 1 donation attempt within the next 18 months and make 0.389 fewer donation attempts (p <0.001). Male donors react to the first LHD. They are 5.32 percentage points (p = 0.139) less likely to make at least 1 donation attempt over the next 18 months and make 0.227 (p = 0.018) fewer donation attempts. After any repeated LHD, male donors are 13.30 percentage points (p = 0.004) less likely to make at least 1 donation attempt and make 0.152 (p = 0.308) fewer donation attempts. CONCLUSION: LHD have detrimental impacts on donor return, especially if they occur repeatedly - suggesting that avoiding false LHD and helping donors to better cope with them helps to maintain the pool of prospective donors.

4.
J Health Econ ; 70: 102244, 2020 03.
Article in English | MEDLINE | ID: mdl-31927309

ABSTRACT

Blood donations are increasingly important for medical procedures, while meeting demand is challenging. This paper studies the role of spillovers arising from social interactions in the context of voluntary blood donations. We analyze a large-scale intervention among pairs of blood donors who live at the same street address. A quasi-random phone call provides the instrument for identifying the extent to which the propensity to donate spills over within these pairs. Spillovers transmit 41% to 46% of the behavioral impulse from one donor to the peer. This creates a significant social multiplier, ranging between 1.7 and 1.85. There is no evidence that these spillovers lead to intertemporal substitution. Taken together, our findings indicate that policy interventions have a substantially larger effect when targeted towards pairs instead of isolated individuals.


Subject(s)
Blood Donors/psychology , Motivation , Adult , Female , Humans , Male , Middle Aged , Peer Group , Social Interaction , Volunteers
5.
ChemMedChem ; 13(18): 1997-2007, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29985556

ABSTRACT

CLK2 inhibition has been proposed as a potential mechanism to improve autism and neuronal functions in Phelan-McDermid syndrome (PMDS). Herein, the discovery of a very potent indazole CLK inhibitor series and the CLK2 X-ray structure of the most potent analogue are reported. This new indazole series was identified through a biochemical CLK2 Caliper assay screen with 30k compounds selected by an in silico approach. Novel high-resolution X-ray structures of all CLKs, including the first CLK4 X-ray structure, bound to known CLK2 inhibitor tool compounds (e.g., TG003, CX-4945), are also shown and yield insight into inhibitor selectivity in the CLK family. The efficacy of the new CLK2 inhibitors from the indazole series was demonstrated in the mouse brain slice assay, and potential safety concerns were investigated. Genotoxicity findings in the human lymphocyte micronucleus test (MNT) assay are shown by using two structurally different CLK inhibitors to reveal a major concern for pan-CLK inhibition in PMDS.


Subject(s)
Chromosome Disorders/drug therapy , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Discovery , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
6.
Nucleic Acids Res ; 43(16): 7823-37, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26130720

ABSTRACT

Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Promoter Regions, Genetic , RNA, Antisense/biosynthesis , Transcription, Genetic , Acetylation , Chromatin/chemistry , Chromatin Assembly and Disassembly , Galactokinase/genetics , Gene Deletion , Genes, Fungal , Histone Chaperones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/genetics
7.
Elife ; 3: e03635, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407679

ABSTRACT

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.


Subject(s)
Gene Expression Regulation, Fungal , Multigene Family , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Carbon/pharmacology , Genes, Fungal , Genetic Loci , Metabolic Networks and Pathways/drug effects , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
8.
PLoS Genet ; 9(11): e1003943, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24278030

ABSTRACT

Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.


Subject(s)
Apoptosis/radiation effects , Mitogen-Activated Protein Kinase Kinases/genetics , RNA, Ribosomal/biosynthesis , Ribosomes/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA Damage/genetics , DNA Damage/radiation effects , Germ Cells/radiation effects , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Point Mutation , RNA Polymerase I/genetics , RNA, Ribosomal/radiation effects , Radiation, Ionizing , Signal Transduction , Tumor Suppressor Protein p53/genetics
9.
Nucleic Acids Res ; 40(13): 6304-18, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22467213

ABSTRACT

Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.


Subject(s)
Caenorhabditis elegans/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Polyadenylation , Sequence Analysis, RNA , Animals , Caenorhabditis elegans/metabolism , Cell Fractionation/methods , Cell Nucleus/genetics , Flow Cytometry , Intestinal Mucosa/metabolism , Transcriptome
10.
Nucleic Acids Res ; 37(20): 6723-36, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19740764

ABSTRACT

The current predicted mechanisms that describe RNA polymerase II (pol II) transcription termination downstream of protein expressing genes fail to adequately explain, how premature termination is prevented in eukaryotes that possess operon-like structures. Here we address this issue by analysing transcription termination at the end of single protein expressing genes and genes located within operons in the nematode Caenorhabditis elegans. By using a combination of RT-PCR and ChIP analysis we found that pol II generally transcribes up to 1 kb past the poly(A) sites into the 3' flanking regions of the nematode genes before it terminates. We also show that pol II does not terminate after transcription of internal poly(A) sites in operons. We provide experimental evidence that five randomly chosen C. elegans operons are transcribed as polycistronic pre-mRNAs. Furthermore, we show that cis-splicing of the first intron located in downstream positioned genes in these polycistronic pre-mRNAs is critical for their expression and may play a role in preventing premature pol II transcription termination.


Subject(s)
Caenorhabditis/genetics , DNA Polymerase II/metabolism , Gene Expression Regulation , Animals , Introns , Operon , RNA Interference , RNA Splicing , RNA, Messenger/metabolism , Ribonucleoprotein, U1 Small Nuclear/antagonists & inhibitors , Trans-Splicing , Transcription, Genetic
11.
Nucleic Acids Res ; 37(15): 5007-18, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19531741

ABSTRACT

The procyclin genes in Trypanosoma brucei are transcribed by RNA polymerase I as part of 5-10 kb long polycistronic transcription units on chromosomes VI and X. Each procyclin locus begins with two procyclin genes followed by at least one procyclin-associated gene (PAG). In procyclic (insect midgut) form trypanosomes, PAG mRNA levels are about 100-fold lower than those of procyclins. We show that deletion of PAG1, PAG2 or PAG3 results in increased mRNA levels from downstream genes in the same transcription unit. Nascent RNA analysis revealed that most of the effects are due to increased transcription elongation in the knockouts. Furthermore, transient and stable transfections showed that sequence elements on both strands of PAG1 can inhibit Pol I transcription. Finally, by database mining we identified 30 additional PAG-related sequences that are located almost exclusively at strand switch regions and/or at sites where a change of RNA polymerase type is likely to occur.


Subject(s)
Protozoan Proteins/genetics , RNA Polymerase I/metabolism , Regulatory Elements, Transcriptional , Transcription, Genetic , Trypanosoma brucei brucei/genetics , 5' Untranslated Regions , Animals , Gene Deletion , Genes, Protozoan , Genome, Protozoan , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , RNA Interference , RNA Polymerase I/antagonists & inhibitors , RNA, Messenger/metabolism , Trypanosoma brucei brucei/metabolism
12.
Mol Biochem Parasitol ; 150(2): 144-56, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16930740

ABSTRACT

EP and GPEET procyclins are the major surface glycoproteins of Trypanosoma brucei in the midgut of tsetse flies (Glossina spp.). The procyclin genes are located at the beginning of polycistronic transcription units and are followed by at least one procyclin-associated gene (PAG). The EP/PAG1 locus on one copy of chromosome X begins with the three genes EP1, EP2 and PAG1; the end of this unit has not been characterized previously. The EP/PAG2 locus on the other copy of chromosome X contains the same procyclin genes followed by PAG2 and PAG4. Here we show that the EP/PAG1 locus in AnTat1.1 has to be extended by three more PAGs, which we named PAG5, PAG2* and PAG4. The EP/PAG2 locus most likely evolved from the EP/PAG1 locus by deletion of a fragment from within PAG1 to PAG2*. The procyclin loci on the two copies of chromosome VI are indistinguishable, and contain the genes GPEET, EP3, PAG3 and GRESAG2.1. The mRNA levels of PAG1, PAG2 and PAG3 are transiently increased during differentiation of bloodstream forms to procyclic forms. Unexpectedly, procyclic forms of a PAG knockout clone lacking all eight PAGs in the procyclin loci were transmissible by Glossina morsitans. Furthermore, the deletion mutant could still establish midgut infections when competing with a tagged clone with the full complement of PAGs. Cyclical transmission was also possible when tsetse flies were infected with bloodstream forms of the deletion mutant, demonstrating that the PAGs are not essential for the differentiation of bloodstream to procyclic forms in vivo.


Subject(s)
Genes, Protozoan , Insect Vectors/parasitology , Membrane Glycoproteins/genetics , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis/parasitology , Tsetse Flies/parasitology , Animals , Base Sequence , Chromosome Mapping , Female , Gene Library , Genome, Protozoan , Life Cycle Stages , Mice , Molecular Sequence Data , Sequence Alignment , Trypanosoma brucei brucei/growth & development , Trypanosomiasis/transmission
13.
Eur J Biochem ; 269(20): 4969-80, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12383255

ABSTRACT

Thirteen glucose analogues bearing electrophilic groups were synthesized (five of them for the first time) and screened as inhibitors of the glucose transporter (EIIGlc) of the Escherichia coli phosphoenolpyruvate-sugar phosphotransferase system (PTS). 2',3'-Epoxypropyl beta-d-glucopyranoside (3a) is an inhibitor and also a pseudosubstrate. Five analogues are inhibitors of nonvectorial Glc phosphorylation by EIIGlc but not pseudosubstrates. They are selective for EIIGlc as demonstrated by comparison with EIIMan, another Glc-specific but structurally different transporter. 3a is the only analogue that inhibits EIIGlc by binding to the high-affinity cytoplasmic binding site and also strongly inhibits sugar uptake mediated by this transporter. The most potent inhibitor in vitro, methyl 6,7-anhydro-d,l-glycero-alpha-d-gluco-heptopyranoside (1d), preferentially interacts with the low-affinity cytoplasmic site but only weakly inhibits Glc uptake. Binding and/or phosphorylation from the cytoplasmic side of EIIGlc is more permissive than sugar binding and/or translocation of substrates via the periplasmic site. EIIGlc is rapidly inactivated by the 6-O-bromoacetyl esters of methyl alpha-d-glucopyranoside (1a) and methyl alpha-d-mannopyranoside (1c), methyl 6-deoxy-6-isothiocyanato-alpha-d-glucopyranoside (1e), beta-d-glucopyranosyl isothiocyanate (3c) and beta-d-glucopyranosyl phenyl isothiocyanate (3d). Phosphorylation of EIIGlc protects, indicating that inactivation occurs by alkylation of Cys421. Glc does not protect, but sensitizes EIIGlc for inactivation by 1e and 3d, which is interpreted as the effect of glucose-induced conformational changes in the dimeric transporter. Glc also sensitizes EIIGlc for inactivation by 1a and 1c of uptake by starved cells. This indicates that Cys421 which is located on the cytoplasmic domain of EIIGlc becomes transiently accessible to substrate analogues on the periplasmic side of the transporter.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Glucosides/chemistry , Glucosides/pharmacology , Phosphoenolpyruvate Sugar Phosphotransferase System/antagonists & inhibitors , Binding Sites , Biochemistry/methods , Biological Transport , Cysteine/chemistry , Cysteine/metabolism , Drug Design , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Epoxy Compounds/chemical synthesis , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Glucose/chemistry , Glucose/metabolism , Glucosides/chemical synthesis , Glucosides/metabolism , Microbial Sensitivity Tests , Phosphoenolpyruvate Sugar Phosphotransferase System/drug effects , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphorylation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL