Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Ear Hear ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987893

ABSTRACT

OBJECTIVES: Usher syndrome (USH), characterized by bilateral sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP), prompts increased reliance on hearing due to progressive visual deterioration. It can be categorized into three subtypes: USH type 1 (USH1), characterized by severe to profound congenital SNHL, childhood-onset RP, and vestibular areflexia; USH type 2 (USH2), presenting with moderate to severe progressive SNHL and RP onset in the second decade, with or without vestibular dysfunction; and USH type 3 (USH3), featuring variable progressive SNHL beginning in childhood, variable RP onset, and diverse vestibular function. Previous studies evaluating cochlear implant (CI) outcomes in individuals with USH used varying or short follow-up durations, while others did not evaluate outcomes for each subtype separately. This study evaluates long-term CI performance in subjects with USH, at both short-term and long-term, considering each subtype separately. DESIGN: This retrospective, observational cohort study identified 36 CI recipients (53 ears) who were categorized into four different groups: early-implanted USH1 (first CI at ≤7 years of age), late-implanted USH1 (first CI at ≥8 years of age), USH2 and USH3. Phoneme scores at 65 dB SPL with CI were evaluated at 1 year, ≥2 years (mid-term), and ≥5 years postimplantation (long-term). Each subtype was analyzed separately due to the significant variability in phenotype observed among the three subtypes. RESULTS: Early-implanted USH1-subjects (N = 23 ears) achieved excellent long-term phoneme scores (100% [interquartile ranges {IQR} = 95 to 100]), with younger age at implantation significantly correlating with better CI outcomes. Simultaneously implanted subjects had significantly better outcomes than sequentially implanted subjects (p = 0.028). Late-implanted USH1 subjects (N = 3 ears) used CI solely for sound detection and showed a mean phoneme discrimination score of 12% (IQR = 0 to 12), while still expressing satisfaction with ambient sound detection. In the USH2 group (N = 23 ears), a long-term mean phoneme score of 85% (IQR = 81 to 95) was found. Better outcomes were associated with younger age at implantation and higher preimplantation speech perception scores. USH3-subjects (N = 7 ears) achieved a mean postimplantation phoneme score of 71% (IQR = 45 to 91). CONCLUSIONS: This study is currently one of the largest and most comprehensive studies evaluating CI outcomes in individuals with USH, demonstrating that overall, individuals with USH benefit from CI at both short- and long-term follow-up. Due to the considerable variability in phenotype observed among the three subtypes, each subtype was analyzed separately, resulting in smaller sample sizes. For USH1 subjects, optimal CI outcomes are expected with early simultaneous bilateral implantation. Late implantation in USH1 provides signaling function, but achieved speech recognition is insufficient for oral communication. In USH2 and USH3, favorable CI outcomes are expected, especially if individuals exhibit sufficient speech recognition with hearing aids and receive ample auditory stimulation preimplantation. Early implantation is recommended for USH2, given the progressive nature of hearing loss and concomitant severe visual impairment. In comparison with USH2, predicting outcomes in USH3 remains challenging due to the variability found. Counseling for USH2 and USH3 should highlight early implantation benefits and encourage hearing aid use.

2.
Hum Genet ; 143(5): 721-734, 2024 May.
Article in English | MEDLINE | ID: mdl-38691166

ABSTRACT

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Subject(s)
Genetic Association Studies , Hearing Loss , Membrane Proteins , Serine Endopeptidases , Humans , Female , Male , Serine Endopeptidases/genetics , Adult , Membrane Proteins/genetics , Hearing Loss/genetics , Child , Middle Aged , Adolescent , Child, Preschool , Genotype , Cohort Studies , Phenotype , Mutation, Missense , Cross-Sectional Studies , Young Adult , Retrospective Studies , Aged , Neoplasm Proteins
3.
Eur J Hum Genet ; 32(7): 858-863, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778080

ABSTRACT

The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.


Subject(s)
Genetic Variation , Humans , Genetic Testing/standards , Genetic Testing/methods
5.
Eur J Hum Genet ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806661

ABSTRACT

INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP). Here, we report two novel variants in INPP5E identified in two patients with non-syndromic RP: patient 1 with compound heterozygous variants (c.1516C > T, p.(Q506*), and c.847G > A, p.(A283T)) and patient 2 with a homozygous variant (c.1073C > T, p.(P358L)). To determine whether these variants were causative for the phenotype in the patients, automated ciliary phenotyping of patient-derived dermal fibroblasts was performed for percent ciliation, cilium length, retrograde IFT trafficking, and INPP5E localization. In both patients, a decrease in ciliary length and loss of INPP5E localization in the primary cilia were seen. With these molecular findings, we can confirm functionally that the novel variants in INPP5E are causative for the RP phenotypes seen in both patients. Additionally, this study demonstrates the usefulness of utilizing ciliary phenotyping as an assistant in ciliopathy diagnosis and phenotyping.

6.
Nat Commun ; 14(1): 6845, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891200

ABSTRACT

The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.


Subject(s)
Exome , Polymorphism, Single Nucleotide , Humans , Exome/genetics , INDEL Mutation , DNA Copy Number Variations , Systems Analysis , High-Throughput Nucleotide Sequencing/methods
7.
Genes (Basel) ; 14(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36833385

ABSTRACT

The aim of this study is to contribute to a better description of the genotypic and phenotypic spectrum of DFNA6/14/38 and aid in counseling future patients identified with this variant. Therefore, we describe the genotype and phenotype in a large Dutch-German family (W21-1472) with autosomal dominant non-syndromic, low-frequency sensorineural hearing loss (LFSNHL). Exome sequencing and targeted analysis of a hearing impairment gene panel were used to genetically screen the proband. Co-segregation of the identified variant with hearing loss was assessed by Sanger sequencing. The phenotypic evaluation consisted of anamnesis, clinical questionnaires, physical examination and examination of audiovestibular function. A novel likely pathogenic WFS1 variant (NM_006005.3:c.2512C>T p.(Pro838Ser)) was identified in the proband and found to co-segregate with LFSNHL, characteristic of DFNA6/14/38, in this family. The self-reported age of onset of hearing loss (HL) ranged from congenital to 50 years of age. In the young subjects, HL was demonstrated in early childhood. At all ages, an LFSNHL (0.25-2 kHz) of about 50-60 decibel hearing level (dB HL) was observed. HL in the higher frequencies showed inter-individual variability. The dizziness handicap inventory (DHI) was completed by eight affected subjects and indicated a moderate handicap in two of them (aged 77 and 70). Vestibular examinations (n = 4) showed abnormalities, particularly in otolith function. In conclusion, we identified a novel WFS1 variant that co-segregates with DFNA6/14/38 in this family. We found indications of mild vestibular dysfunction, although it is uncertain whether this is related to the identified WFS1 variant or is an incidental finding. We would like to emphasize that conventional neonatal hearing screening programs are not sensitive to HL in DFNA6/14/38 patients, because high-frequency hearing thresholds are initially preserved. Therefore, we suggest screening newborns in DFNA6/14/38 families with more frequency-specific methods.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Humans , Child, Preschool , Hearing Loss, Sensorineural/genetics , Genotype , Phenotype
8.
HGG Adv ; 4(2): 100181, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36785559

ABSTRACT

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Humans , Usher Syndromes/diagnosis , RNA Precursors , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Whole Genome Sequencing , Extracellular Matrix Proteins/genetics
9.
Genet Med ; 25(3): 100345, 2023 03.
Article in English | MEDLINE | ID: mdl-36524988

ABSTRACT

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Subject(s)
Genome, Human , Retinal Diseases , Humans , Retrospective Studies , Genome, Human/genetics , Chromosome Mapping , Sequence Analysis , Retinal Diseases/genetics , Genomic Structural Variation , Eye Proteins/genetics
10.
NPJ Genom Med ; 7(1): 65, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36351915

ABSTRACT

Pathogenic variants in the OPN1LW/OPN1MW gene cluster are causal for a range of mild to severe visual impairments with color deficiencies. The widely utilized short-read next-generation sequencing (NGS) is inappropriate for the analysis of the OPN1LW/OPN1MW gene cluster and many patients with pathogenic variants stay underdiagnosed. A diagnostic genetic assay was developed for the OPN1LW/OPN1MW gene cluster, consisting of copy number analysis via multiplex ligation-dependent probe amplification and sequence analysis via long-read circular consensus sequencing. Performance was determined on 50 clinical samples referred for genetic confirmation of the clinical diagnosis (n = 43) or carrier status analysis (n = 7). A broad range of pathogenic haplotypes were detected, including deletions, hybrid genes, single variants and combinations of variants. The developed genetic assay for the OPN1LW/OPN1MW gene cluster is a diagnostic test that can detect both structural and nucleotide variants with a straightforward analysis, improving diagnostic care of patients with visual impairment.

11.
NPJ Genom Med ; 7(1): 37, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672333

ABSTRACT

The USH2A variant c.2276 G > T (p.(Cys759Phe)) has been described by many authors as a frequent cause of autosomal recessive retinitis pigmentosa (arRP). However, this is in contrast with the description of two asymptomatic individuals homozygous for this variant. We therefore assessed pathogenicity of the USH2A c.2276 G > T variant using extensive genetic and functional analyses. Whole genome sequencing and optical genome mapping were performed for three arRP cases homozygous for USH2A c.2276 G > T to exclude alternative genetic causes. A minigene splice assay was designed to investigate the effect of c.2276 G > T on pre-mRNA splicing, in presence or absence of the nearby c.2256 T > C variant. Moreover, an ush2ap.(Cys771Phe) zebrafish knock-in model mimicking human p.(Cys759Phe) was generated and characterized using functional and immunohistochemical analyses. Besides the homozygous c.2276 G > T USH2A variant, no alternative genetic causes were identified. Evaluation of the ush2ap.(Cys771Phe) zebrafish model revealed strongly reduced levels of usherin expression at the photoreceptor periciliary membrane, increased levels of rhodopsin localization in the photoreceptor cell body and decreased electroretinogram (ERG) b-wave amplitudes compared to wildtype controls. In conclusion, we confirmed pathogenicity of USH2A c.2276 G > T (p.(Cys759Phe)). Consequently, cases homozygous for c.2276 G > T can now receive a definite genetic diagnosis and can be considered eligible for receiving future QR-421a-mediated exon 13 skipping therapy.

12.
Invest Ophthalmol Vis Sci ; 63(5): 27, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35608844

ABSTRACT

Purpose: Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders with approximately 270 genes involved. IMPG2 is associated with adult-onset vitelliform macular dystrophy. Here, we investigated two unrelated patients with vitelliform macular dystrophy to identify the underlying genetic cause. Methods: Whole-exome sequencing identified a putative causal complex allele consisting of c.3023-15T>A and c.3023G>A (p.(Gly1008Asp)) in IMPG2 in both individuals. To assess its effect, in vitro splice assays in HEK293T and further characterization in patient-derived photoreceptor precursor cells (PPCs) were conducted. Results: The results of the midigene splice assays in HEK293T showed that the complex allele causes a variety of splicing defects ranging from a small deletion to (multiple-)exon skipping. This finding was further validated using patient-derived PPCs that showed a significant increase of out-of-frame transcripts lacking one or multiple exons compared to control-derived PPCs. Overall, control PPCs consistently showed low levels of aberrantly spliced IMPG2 transcripts that were highly elevated in patient-derived PPCs. These differences were even more obvious upon inhibition of nonsense-mediated decay with cycloheximide. Conclusions: We report a heterozygous complex allele in IMPG2 causative for adult-onset vitelliform macular dystrophy in two unrelated individuals with mild visual loss and bilateral vitelliform lesions. The predicted causal missense mutation c.3023G>A, located in the consensus splice acceptor site, enhances the splicing effect of the upstream variant c.3023-15T>A, leading to the generation of aberrant transcripts that decrease the full-length IMPG2 levels. These results suggest a haploinsufficiency mechanism of action and highlight the complementarity of using different models to functionally assesses splicing defects.


Subject(s)
Vitelliform Macular Dystrophy , Adult , Alleles , HEK293 Cells , Humans , Mutation , Proteoglycans/genetics , RNA Splice Sites , Vitelliform Macular Dystrophy/diagnosis , Vitelliform Macular Dystrophy/genetics , Exome Sequencing
13.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35226187

ABSTRACT

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Arylsulfatases , Humans , Mutant Proteins , Retinitis Pigmentosa/genetics , Sulfatases , Usher Syndromes/genetics , Usher Syndromes/metabolism
14.
Am J Hum Genet ; 109(3): 498-507, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120629

ABSTRACT

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.


Subject(s)
ATP-Binding Cassette Transporters , Genetic Counseling , ATP-Binding Cassette Transporters/genetics , Cross-Sectional Studies , Humans , Mutation , Stargardt Disease/genetics
15.
Eur J Hum Genet ; 30(2): 170-177, 2022 02.
Article in English | MEDLINE | ID: mdl-34697415

ABSTRACT

Unsolicited findings (UFs) are uncovered unintentionally and predispose to a disease unrelated to the clinical question. The frequency and nature of UFs uncovered in clinical practice remain largely unexplored. We here evaluated UFs identified during a 5-year period in which 16,482 index patients received clinical whole-exome sequencing (WES). UFs were identified in 0.58% (95/16,482) of index patients, indicating that the overall frequency of UFs in clinical WES is low. Fewer UFs were identified using restricted disease-gene panels (0.03%) than when using whole-exome/Mendeliome analysis (1.03%). The UF was disclosed to 86 of 95 individuals, for reasons of medical actionability. Only 61% of these UFs reside in a gene that is listed on the "ACMG59"-list, representing a list of 59 genes for which the American College of Medical Genetics recommends UF disclosure. The remaining 39% were grouped into four categories: disorders similar to "ACMG59"-listed disorders (25%); disorders for which disease manifestation could be influenced (7%); UFs providing reproductive options (2%); and UFs with pharmacogenetic implications (5%). Hence, our experience shows that UFs predisposing to medically actionable disorders affect a broader range of genes than listed on the "ACMG59", advocating that a pre-defined gene list is too restrictive, and that UFs may require ad hoc evaluation of medical actionability. While both the identification and disclosure of UFs depend on local policy, our lessons learned provide general essential insight into the nature and odds of UFs in clinical exome sequencing.


Subject(s)
Disclosure , Exome , Genetic Testing , Humans , Exome Sequencing
16.
NPJ Genom Med ; 6(1): 97, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795310

ABSTRACT

Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.

17.
Hum Mutat ; 42(12): 1521-1547, 2021 12.
Article in English | MEDLINE | ID: mdl-34411390

ABSTRACT

Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.


Subject(s)
Peripherins/genetics , Retinal Diseases , Genetic Association Studies , Humans , Mutation , Mutation, Missense , Retinal Diseases/genetics
18.
Orphanet J Rare Dis ; 16(1): 142, 2021 03 20.
Article in English | MEDLINE | ID: mdl-33743793

ABSTRACT

BACKGROUND: Rare Eye Diseases (RED) are the leading cause of visual impairment and blindness for children and young adults in Europe. This heterogeneous group of conditions includes over 900 disorders ranging from relatively prevalent disorders such as retinitis pigmentosa to very rare entities such as developmental eye anomalies. A significant number of patients with RED have an underlying genetic etiology. One of the aims of the European Reference Network for Rare Eye Diseases (ERN-EYE) is to facilitate improvement in diagnosis of RED in European member states. MAIN BODY: Technological advances have allowed genetic and genomic testing for RED. The outcome of genetic testing allows better understanding of the condition and allows reproductive and therapeutic options. The increase of the number of clinical trials for RED has provided urgency for genetic testing in RED. A survey of countries participating in ERN-EYE demonstrated that the majority are able to access some forms of genomic testing. However, there is significant variability, particularly regarding testing as part of clinical service. Some countries have a well-delineated rare disease pathway and have a national plan for rare diseases combined or not with a national plan for genomics in medicine. In other countries, there is a well-established organization of genetic centres that offer reimbursed genomic testing of RED and other rare diseases. Clinicians often rely upon research-funded laboratories or private companies. Notably, some member states rely on cross-border testing by way of an academic research project. Consequently, many clinicians are either unable to access testing or are confronted with long turnaround times. Overall, while the cost of sequencing has dropped, the cumulative cost of a genomic testing service for populations remains considerable. Importantly, the majority of countries reported healthcare budgets that limit testing. SHORT CONCLUSION: Despite technological advances, critical gaps in genomic testing remain in Europe, especially in smaller countries where no formal genomic testing pathways exist. Even within larger countries, the existing arrangements are insufficient to meet the demand and to ensure access. ERN-EYE promotes access to genetic testing in RED and emphasizes the clinical need and relevance of genetic testing in RED.


Subject(s)
Eye Diseases , Rare Diseases , Child , Europe , Genetic Testing , Genomics , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics
19.
Ophthalmology ; 128(11): 1604-1617, 2021 11.
Article in English | MEDLINE | ID: mdl-32717343

ABSTRACT

PURPOSE: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. DESIGN: Case-control study. PARTICIPANTS: Individuals (n = 4740) from 5 European cohorts. METHODS: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. MAIN OUTCOME MEASURES: Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. RESULTS: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. CONCLUSIONS: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development.


Subject(s)
DNA/genetics , Eye Proteins/genetics , Genetic Predisposition to Disease , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Case-Control Studies , Eye Proteins/metabolism , Genotype , Humans , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Male , Middle Aged , Phenotype , Risk Factors
20.
HGG Adv ; 2(4): 100046, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-35047838

ABSTRACT

The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...