Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Vet Intern Med ; 37(6): 2410-2421, 2023.
Article in English | MEDLINE | ID: mdl-37801037

ABSTRACT

BACKGROUND: Growing evidence from dogs and humans supports the abundance of mutation-based biomarkers in tumors of dogs. Increasing the use of clinical genomic diagnostic testing now provides another powerful data source for biomarker discovery. HYPOTHESIS: Analyzed clinical outcomes in dogs with cancer profiled using SearchLight DNA, a cancer gene panel for dogs, to identify mutations with prognostic value. ANIMALS: A total of 127 cases of cancer in dogs were analyzed using SearchLight DNA and for which clinical outcome information was available. METHODS: Clinical data points were collected by medical record review. Variables including mutated genes, mutations, signalment, and treatment were fitted using Cox proportional hazard models to identify factors associated with progression-free survival (PFS). The log-rank test was used to compare PFS between patients receiving and not receiving targeted treatment before first progression. RESULTS: Combined genomic and outcomes analysis identified 336 unique mutations in 89 genes across 26 cancer types. Mutations in 6 genes (CCND1, CCND3, SMARCB1, FANCG, CDKN2A/B, and MSH6) were significantly associated with shorter PFS. Dogs that received targeted treatment before first progression (n = 45) experienced significantly longer PFS compared with those that did not (n = 82, P = .01). This significance held true for 29 dogs that received genomically informed targeted treatment compared with those that did not (P = .05). CONCLUSION AND CLINICAL IMPORTANCE: We identified novel mutations with prognostic value and demonstrate the benefit of targeted treatment across multiple cancer types. These results provide clinical evidence of the potential for genomics and precision medicine in dogs with cancer.


Subject(s)
Dog Diseases , Neoplasms , Humans , Dogs , Animals , Prognosis , Neoplasms/genetics , Neoplasms/veterinary , Progression-Free Survival , Mutation , Genomics , DNA , Biomarkers, Tumor/genetics , Dog Diseases/genetics
2.
Oncoimmunology ; 1(8): 1248-1257, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23243588

ABSTRACT

Depletion of tumor associated macrophages and inhibition of tumor angiogenesis have been invoked as the principle mechanisms underlying the antitumor activity of liposomal clodronate (LC). However, previous studies have not examined the effects of LC on systemic antitumor immunity. Here, we used mouse tumor models to elucidate the role of T and NK cells in the antitumor activity elicited by the systemic administration of LC. Strikingly, we found that the antitumor activity of LC is completely abolished in immunodeficient Rag1(-/-) mice. Moreover, both Cd4(-/-) and Cd8(-/-) mice as well as mice depleted of NK cells manifested a significant impaired ability to control tumor growth following LC administration. Treatment with LC did not result in an overall increase in T- or NK-cell numbers in tumors or lymphoid organs, nor was tumor infiltration with T or NK cells altered. However, T and NK cells isolated from the spleen of LC-treated mice exhibited significant increased tumor-specific secretion of interferon γ and interleukin 17 and greater cytolytic activity. We concluded that the antitumor effects of LC are largely dependent on the generation of systemic T-cell and NK- cell activity, most likely owing to the depletion of immune suppressive myeloid cell populations in lymphoid tissues. These findings suggest that the systemic administration of LC may constitute an effective means for non-specifically augmenting the antitumor activity of T and NK cells.

3.
PLoS One ; 5(6): e11085, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20559428

ABSTRACT

BACKGROUND: Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrP(C) expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrP(C) expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. CONCLUSIONS/SIGNIFICANCE: Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrP(C) expression and eliminated PrP(RES) formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrP(C)-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.


Subject(s)
Blood-Brain Barrier , Liposomes , Neurons/metabolism , Prions/metabolism , RNA, Small Interfering/pharmacokinetics , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cells, Cultured , Mice , Molecular Sequence Data , Prions/chemistry , Prions/genetics
4.
Cancer Immunol Immunother ; 59(3): 441-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19760220

ABSTRACT

Malignant histiocytosis (MH) is an aggressive cancer derived from myeloid lineage cells in both dogs and humans. In dogs, the tumor is characterized by the rapid development of metastatic tumors in multiple sites, including especially the lungs and lymph nodes. Humans develop an analogous disease known as Langerhans cell histiocytosis, which primarily affects children and young adults. Because these tumors are often resistant to conventional chemotherapy, there is a need for newer therapeutic approaches. Systemic administration of liposomal clodronate (LC) has been shown to effectively deplete phagocytic cells (e.g., macrophages and dendritic cells) in mice. We investigated therefore whether LC could also be used to treat naturally occurring MH in dogs. First, the susceptibility of canine MH cells to LC-mediated killing was assessed in vitro. Then the clinical safety and effectiveness of LC as a treatment for MH was assessed in a pilot study in five pet dogs with spontaneous MH. We found that canine MH cells were very susceptible to LC-induced apoptotic cell death, whereas other tumor cell lines were resistant to killing by LC. Studies using labeled liposomes demonstrated that susceptibility to LC killing was directly related to the efficiency of liposome uptake. In pet dogs with spontaneous MH, we found that a short course of LC treatment elicited significant tumor regression in two of five treated animals. These findings suggest that liposomal delivery of clodronate and possibly other bisphosphonates may offer an effective new approach to treatment of histiocytic neoplasms in dogs and humans.


Subject(s)
Antineoplastic Agents/administration & dosage , Clodronic Acid/administration & dosage , Dog Diseases/drug therapy , Histiocytic Sarcoma/drug therapy , Liposomes , Animals , Cell Line, Tumor , Dogs , Macrophages/drug effects , Monocytes/metabolism
5.
Appl Opt ; 47(13): C162-6, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449240

ABSTRACT

Electric-field modeling provides insight into the laser damage resistance potential of nodular defects. The laser-induced damage threshold for high-reflector coatings is 13x lower at the third harmonic (351 nm) than at the first harmonic (1053 nm) wavelength. Linear and multiphoton absorption increases with decreasing wavelength, leading to a lower-third harmonic laser resistance. Electric-field effects can also be a contributing mechanism to the lower laser resistance with decreasing wavelength. For suitably large inclusions, the nodule behaves as a microlens. The diffraction-limited spot size decreases with wavelength, resulting in an increase in intensity. Comparison of electric-field finite-element simulations illustrates a 3x to 16x greater light intensification at the shorter wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL