Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Control Release ; 361: 694-716, 2023 09.
Article in English | MEDLINE | ID: mdl-37567507

ABSTRACT

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Subject(s)
Curcumin , Extracellular Vesicles , Ligands , Extracellular Vesicles/metabolism , Hydrophobic and Hydrophilic Interactions , Cholesterol/metabolism
2.
J Med Chem ; 63(17): 9856-9875, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32856916

ABSTRACT

G-protein-coupled receptor SUCNR1 (succinate receptor 1 or GPR91) senses the citric cycle intermediate succinate and is implicated in various pathological conditions such as rheumatoid arthritis, liver fibrosis, or obesity. Here, we describe a novel SUCNR1 antagonist scaffold discovered by high-throughput screening. The poor permeation and absorption properties of the most potent compounds, which were zwitterionic in nature, could be improved by the formation of an internal salt bridge, which helped in shielding the two opposite charges and thus also the high polarity of zwitterions with separated charges. The designed compounds containing such a salt bridge reached high oral bioavailability and oral exposure. We believe that this principle could find a broad interest in the medicinal chemistry field as it can be useful not only for the modulation of properties in zwitterionic compounds but also in acidic or basic compounds with poor permeation.


Subject(s)
Benzamides/pharmacology , Phenylacetates/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Benzamides/chemical synthesis , Benzamides/metabolism , Benzamides/pharmacokinetics , Cell Line , Drug Discovery , Humans , Male , Mice, Inbred C57BL , Phenylacetates/chemical synthesis , Phenylacetates/metabolism , Phenylacetates/pharmacokinetics , Protein Binding , Rats , Receptors, G-Protein-Coupled/metabolism , Static Electricity
3.
Methods Mol Biol ; 2127: 63-80, 2020.
Article in English | MEDLINE | ID: mdl-32112315

ABSTRACT

Integral membrane proteins have a critical role in fundamental biological processes; they are major drug targets and therefore of high research interest. Recombinant protein production is the first step in the protein tool generation for biochemical and biophysical studies. Here, we provide simplified protocols that facilitate the generation of high-quality virus and initial expression analysis for integral membrane protein targets utilizing the baculovirus-mediated expression system in insect cells. The protocol steps include generation of viruses, virus quality control, and initial expression trials utilizing standard commercial baculovirus vector systems and are exemplified for G protein-coupled receptor targets. The viral quality, quantity, and recombinant protein expression are evaluated by microscopy, flow cytometry, fluorimetry, and SDS-PAGE, using either covalently fused fluorescent proteins or co-expressed fluorescence markers. Moreover, integral membrane protein expression levels, approximate molecular mass, and stability can be evaluated from small-scale expression and purification trials.


Subject(s)
Baculoviridae/genetics , Cloning, Molecular/methods , Genetic Vectors , Membrane Proteins/genetics , Spodoptera/cytology , Animals , Baculoviridae/growth & development , Bioreactors , Cell Culture Techniques/methods , Cell Line , Gene Expression Regulation, Viral , Genetic Vectors/genetics , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/isolation & purification , Green Fluorescent Proteins/metabolism , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spodoptera/genetics , Spodoptera/growth & development , Spodoptera/metabolism , Transduction, Genetic/methods , Transfection/methods
4.
Protein Expr Purif ; 167: 105545, 2020 03.
Article in English | MEDLINE | ID: mdl-31778786

ABSTRACT

The generation of integral membrane proteins (IMPs) in heterologous systems and their characterization remains a major challenge in biomedical research. Significant efforts have been invested both in academia and in the pharmaceutical industry to establish technologies for the expression, isolation and characterization of IMPs. Here we summarize some of the key aspects, which are important to support structure-based drug design (SBDD) in drug discovery projects. We furthermore include timeline estimates and an overview of the target selection and biophysical screening approaches.


Subject(s)
Membrane Proteins , Animals , Antibodies , Baculoviridae/genetics , Biophysics , Cell Line , Drug Design , Drug Industry , Gene Expression , Humans , Insecta/genetics , Mammals/genetics , Membrane Proteins/biosynthesis , Membrane Proteins/chemistry , Membrane Proteins/immunology , Membrane Proteins/isolation & purification , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
5.
Nature ; 574(7779): 581-585, 2019 10.
Article in English | MEDLINE | ID: mdl-31645725

ABSTRACT

The tricarboxylic acid cycle intermediate succinate is involved in metabolic processes and plays a crucial role in the homeostasis of mitochondrial reactive oxygen species1. The receptor responsible for succinate signalling, SUCNR1 (also known as GPR91), is a member of the G-protein-coupled-receptor family2 and links succinate signalling to renin-induced hypertension, retinal angiogenesis and inflammation3-5. Because SUCNR1 senses succinate as an immunological danger signal6-which has relevance for diseases including ulcerative colitis, liver fibrosis7, diabetes and rheumatoid arthritis3,8-it is of interest as a therapeutic target. Here we report the high-resolution crystal structure of rat SUCNR1 in complex with an intracellular binding nanobody in the inactive conformation. Structure-based mutagenesis and radioligand-binding studies, in conjunction with molecular modelling, identified key residues for species-selective antagonist binding and enabled the determination of the high-resolution crystal structure of a humanized rat SUCNR1 in complex with a high-affinity, human-selective antagonist denoted NF-56-EJ40. We anticipate that these structural insights into the architecture of the succinate receptor and its antagonist selectivity will enable structure-based drug discovery and will further help to elucidate the function of SUCNR1 in vitro and in vivo.


Subject(s)
Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Animals , Apoproteins/antagonists & inhibitors , Apoproteins/chemistry , Apoproteins/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P2Y1/chemistry , Signal Transduction , Single-Domain Antibodies/chemistry , Species Specificity , Succinic Acid/metabolism
6.
Antibodies (Basel) ; 8(2)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31544844

ABSTRACT

Broad and potent neutralizing llama single domain antibodies (VHH) against HIV-1 targeting the CD4 binding site (CD4bs) have previously been isolated upon llama immunization. Here we describe the epitopes of three additional VHH groups selected from phage libraries. The 2E7 group binds to a new linear epitope in the first heptad repeat of gp41 that is only exposed in the fusion-intermediate conformation. The 1B5 group competes with co-receptor binding and the 1F10 group interacts with the crown of the gp120 V3 loop, occluded in native Env. We present biophysical and structural details on the 2E7 interaction with gp41. In order to further increase breadth and potency, we constructed bi-specific VHH. The combination of CD4bs VHH (J3/3E3) with 2E7 group VHH enhanced strain-specific neutralization with potencies up to 1400-fold higher than the mixture of the individual VHHs. Thus, these new bivalent VHH are potent new tools to develop therapeutic approaches or microbicide intervention.

7.
Nat Struct Mol Biol ; 25(12): 1119-1127, 2018 12.
Article in English | MEDLINE | ID: mdl-30510221

ABSTRACT

TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID complexes with unique subunit compositions exist and several TFIID subunits are shared with other complexes, thereby conveying precise cellular control of subunit allocation and functional assembly of this essential transcription factor. However, the molecular mechanisms that underlie the regulation of TFIID remain poorly understood. Here we use quantitative proteomics to examine TFIID submodules and assembly mechanisms in human cells. Structural and mutational analysis of the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions that are crucial for TFIID integrity and for allocation of TAF9 to TFIID or the Spt-Ada-Gcn5 acetyltransferase (SAGA) co-activator complex. We discover a key checkpoint function for the chaperonin CCT, which specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9 and ultimate holo-TFIID formation. Our findings illustrate at the molecular level how multisubunit complexes are generated within the cell via mechanisms that involve checkpoint decisions facilitated by a chaperone.


Subject(s)
Chaperonin Containing TCP-1/physiology , Models, Molecular , Transcription Factor TFIID/chemistry , Chaperonin Containing TCP-1/metabolism , Crystallography, X-Ray , HeLa Cells , Humans , Mass Spectrometry , Protein Domains , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/metabolism , Transcription, Genetic
8.
Adv Exp Med Biol ; 896: 27-42, 2016.
Article in English | MEDLINE | ID: mdl-27165317

ABSTRACT

Multicomponent biological systems perform a wide variety of functions and are crucially important for a broad range of critical health and disease states. A multitude of applications in contemporary molecular and synthetic biology rely on efficient, robust and flexible methods to assemble multicomponent DNA circuits as a prerequisite to recapitulate such biological systems in vitro and in vivo. Numerous functionalities need to be combined to allow for the controlled realization of information encoded in a defined DNA circuit. Much of biological function in cells is catalyzed by multiprotein machines typically made up of many subunits. Provision of these multiprotein complexes in the test-tube is a vital prerequisite to study their structure and function, to understand biology and to develop intervention strategies to correct malfunction in disease states. ACEMBL is a technology concept that specifically addresses the requirements of multicomponent DNA assembly into multigene constructs, for gene delivery and the production of multiprotein complexes in high-throughput. ACEMBL is applicable to prokaryotic and eukaryotic expression hosts, to accelerate basic and applied research and development. The ACEMBL concept, reagents, protocols and its potential are reviewed in this contribution.


Subject(s)
Eukaryotic Cells/metabolism , Gene Transfer Techniques , High-Throughput Screening Assays , Prokaryotic Cells/metabolism , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Animals , Automation, Laboratory , Gene Expression Regulation , Genetic Vectors , Humans , Multiprotein Complexes , Plasmids/genetics , Plasmids/metabolism , Protein Conformation , Protein Multimerization , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
9.
J Mol Biol ; 428(12): 2581-2591, 2016 Jun 19.
Article in English | MEDLINE | ID: mdl-27067110

ABSTRACT

Class II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion. Recent results indicate that TFIID itself is built from distinct preformed submodules, which reside in the nucleus but also in the cytosol of cells. Here, we highlight recent insights in transcription factor assembly and the regulation of transcription preinitiation.


Subject(s)
Transcription, Genetic/genetics , Transcription, Genetic/physiology , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/physiology , Co-Repressor Proteins/metabolism , Humans , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription Factor TFIID/metabolism , Transcription Factors/metabolism
10.
Nat Commun ; 6: 6011, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25586196

ABSTRACT

General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules.


Subject(s)
Cytoplasm/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/chemistry , Amino Acid Motifs , Calorimetry , Cell Nucleus/metabolism , Crystallography, X-Ray , HeLa Cells , Histones/chemistry , Humans , Mass Spectrometry/methods , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Transcription Factor TFIID/metabolism , Transcription Factors/metabolism
11.
Methods Mol Biol ; 1261: 63-89, 2015.
Article in English | MEDLINE | ID: mdl-25502194

ABSTRACT

The functional units within cells are often macromolecular complexes rather than single species. Production of these complexes as assembled homogenous samples is a prerequisite for their biophysical and structural characterization and hence an understanding of their function in molecular terms. Co-expression in Escherichia coli has been used routinely to decipher the subunit composition, assembly, and production of whole protein complexes. Such complexes can then be used to reconstitute protein/nucleic acid complexes in vitro. In this chapter we present protocols for the widely utilized ACEMBL and pET-MCN/pET-MCP vector series which enable the rapid and automated co-expression of protein complexes in Escherichia coli.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/genetics , Multiprotein Complexes/biosynthesis , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , Escherichia coli/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Multiprotein Complexes/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
12.
Curr Opin Struct Biol ; 24: 91-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24440461

ABSTRACT

Class II transcription initiation is a highly regulated process and requires the assembly of a pre-initiation complex (PIC) containing DNA template, RNA polymerase II (RNAPII), general transcription factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and Mediator. RNAPII, TFIID, TFIIH and Mediator are large multiprotein complexes, each containing 10 and more subunits. Altogether, the PIC is made up of about 60 polypeptides with a combined molecular weight of close to 4MDa. Recent structural studies of key PIC components have significantly advanced our understanding of transcription initiation. TFIID was shown to bind promoter DNA in a reorganized state. The architecture of a core-TFIID complex was elucidated. Crystal structures of the TATA-binding protein (TBP) bound to TBP-associated factor 1 (TAF1), RNAPII-TFIIB complexes and the Mediator head module were solved. The overall architectures of large PIC assemblies from human and yeast have been determined by electron microscopy (EM). Here we review these latest structural insights into the architecture and assembly of the PIC, which reveal exciting new mechanistic details of transcription initiation.


Subject(s)
Mediator Complex/metabolism , RNA Polymerase II/metabolism , Transcription Factors, General/metabolism , Transcriptional Activation , Animals , Humans , Mediator Complex/chemistry , Models, Molecular , Protein Conformation , RNA Polymerase II/chemistry , Transcription Factors, General/chemistry
13.
Methods Mol Biol ; 1073: 131-40, 2013.
Article in English | MEDLINE | ID: mdl-23996444

ABSTRACT

A robust protocol to generate recombinant DNA containing multigene expression cassettes by using sequence and ligation independent cloning (SLIC) followed by multiplasmid Cre-LoxP recombination in tandem for multiprotein complex research is described. The protocol includes polymerase chain reaction (PCR) amplification of the desired genes, seamless insertion into the target vector via SLIC, and Cre-LoxP recombination of specific donor and acceptor plasmid molecules, optionally in a robotic setup. This procedure, called tandem recombineering, has been implemented for multiprotein expression in E. coli and mammalian cells, and also for insect cells using a recombinant baculovirus.


Subject(s)
Cloning, Molecular/methods , DNA Shuffling/methods , Gene Expression , Homologous Recombination , Multiprotein Complexes/metabolism , Protein Engineering/methods , Proteins/genetics , Genetic Vectors/genetics , Proteins/metabolism
14.
J Vis Exp ; (77): e50159, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23892976

ABSTRACT

Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many scientists from academia and industry to accelerate protein complex research projects.


Subject(s)
Baculoviridae/genetics , Multiprotein Complexes/biosynthesis , Recombinant Proteins/biosynthesis , Sf9 Cells/virology , Animals , Molecular Biology/instrumentation , Molecular Biology/methods , Molecular Biology/standards , Multiprotein Complexes/genetics , Recombinant Proteins/genetics , Sf9 Cells/metabolism , Spodoptera
15.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 81-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21245528

ABSTRACT

In enteropathogenic Yersinia, the expression of several early-phase virulence factors such as invasin is tightly regulated in response to environmental cues. The responsible regulatory network is complex, involving several regulatory RNAs and proteins such as the LysR-type transcription regulator (LTTR) RovM. In this study, the crystal structure of the effector-binding domain (EBD) of RovM, the first LTTR protein described as being involved in virulence regulation, was determined at a resolution of 2.4 Å. Size-exclusion chromatography and comparison with structures of full-length LTTRs show that RovM is most likely to adopt a tetrameric arrangement with two distant DNA-binding domains (DBDs), causing the DNA to bend around it. Additionally, a cavity was detected in RovM which could bind small inducer molecules.


Subject(s)
Bacterial Proteins/chemistry , Transcription Factors/chemistry , Yersinia pseudotuberculosis/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
16.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 9): 979-87, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20823549

ABSTRACT

The human ATP-binding cassette (ABC) transporter ABCB6 is involved in haem-precursor transport across the mitochondrial membrane. The crystal structure of its nucleotide-binding domain (NBD) has been determined in the apo form and in complexes with ADP, with ADP and Mg(2+) and with ATP at high resolution. The overall structure is L-shaped and consists of two lobes, consistent with other reported NBD structures. Nucleotide binding is mediated by the highly conserved Tyr599 and the Walker A motif, and induces notable structural changes. Structural comparison with other structurally characterized NBDs and full-length ABC transporters gives the first insight into the possible catalytic mechanism of ABCB6 and the role of the N-terminal helix alpha(1) in full-length ABCB6.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Nucleotides/chemistry , Protein Interaction Domains and Motifs , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...