Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 928: 148769, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39025340

ABSTRACT

There is increasing evidence that gender impacts the onset and progression of cardiovascular pathology. However, it is vastly unclear how this variable determines the ultimate outcomes, particularly in the setting of pressure overload-induced left ventricular hypertrophy (LVH). This study was carried out to fill this gap, at least in part, by assessing myocardial expression of G protein-coupled estrogen receptor (GPER) in female and male rats afflicted with LVH. Both female and male rats underwent abdominal aorta banding to induce LVH or were kept intact as control groups. At the end of the experiment, carotid artery catheterization was performed to measure systolic (SBP) and diastolic (DBP) blood pressure. Fibrosis and cardiomyocyte cross-sectional area were assessed by conventional histological analyses. Protein and mRNA expression were evaluated by Western blot/immunofluorescence staining and real-time RT-PCR technique, respectively. In LVH groups, male rats exhibited higher SBP and DBP, heart weight to body weight ratio, and fibrosis compared with female rats. However, both sexes showed a similar increase in cardiomyocyte size after LVH induction. In female, but not in male rats, LVH instigated the GPER mRNA and protein expression in the heart. These results, confirm a significant interaction between gender and myocardial remodeling in terms of GPER expression. Thus, it can be argued that sex differences in the cardiac GPER expression may be responsible for sex differences in the pressure overload-induced LVH. In other words, the female heart seems to unleash stronger protection against pressure overload than that of males in light of a higher GPER expression.

2.
J Cardiovasc Pharmacol ; 78(1): e55-e64, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34232225

ABSTRACT

ABSTRACT: Left ventricular hypertrophy (LVH) makes the heart vulnerable to ischemia/reperfusion (IR) injury. Angiotensin (Ang) (1-7) is recognized as a cardioprotective peptide. We investigated the effect of polyphenol resveratrol on myocardial IR injury after hypertrophy and examined cardiac content of Ang (1-7) and transcription of its receptor (MasR). Rats were divided into sham-operated, LVH, IR, LVH + IR, and resveratrol + LVH + IR groups. Myocardial hypertrophy and IR models were created by abdominal aortic banding and left coronary artery occlusion, respectively. To evaluate the electrocardiogram parameters and incidence of arrhythmias, electrocardiogram was recorded by subcutaneous leads (lead II). Blood pressure was measured through the left carotid artery. Infarct size was determined by the triphenyl tetrazolium chloride staining. The Ang (1-7) level was evaluated by immunohistochemistry. The Mas receptor mRNA level was assessed by the real-time real time reverse transcription polymerase chain reaction technique. QT-interval duration, infarct size, and incidence of ischemia-induced arrhythmia were significantly higher in the LVH + IR group. However, in the resveratrol-treated group, these parameters were decreased significantly. The cardiac level of Ang (1-7) was decreased in untreated hypertrophied hearts (LVH and LVH + IR groups). Pretreatment with resveratrol normalized the cardiac level of Ang (1-7). The mRNA level of Mas receptor was increased in all of hypertrophied hearts in the presence or absence of resveratrol. Resveratrol can decrease IR injury in rats with LVH. The anti-ischemic effect of resveratrol may be related to the enhancement of Ang (1-7)/MasR axis.


Subject(s)
Angiotensin I/metabolism , Hypertrophy, Left Ventricular/drug therapy , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Resveratrol/pharmacology , Animals , Disease Models, Animal , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Proto-Oncogene Mas/genetics , Rats, Wistar , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/prevention & control , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL