Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 125(6): 1743-1748, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30260751

ABSTRACT

Achilles tendinopathy is 10 times more common among running athletes compared with age-matched peers. Load-induced tendon remodeling and its progression in an at-risk population of developing symptomatic tendinopathy are not well understood. The purpose of this study was to prospectively characterize Achilles and patellar tendon structure in competitive collegiate distance runners over different competitive seasons using quantitative ultrasound imaging. Twenty-two collegiate cross-country runners and eleven controls were examined for this study. Ultrasound images of bilateral Achilles and patellar tendons were obtained near the start and end of the collegiate cross-country season and the conclusion outdoor track season. Collagen organization, mean echogenicity, tendon thickness, and neovascularity were determined using well-established image processing techniques. Achilles tendon collagen was less aligned in runners compared with controls (28% greater) but improved slightly (7% decrease) after the completion of the track season. Conversely, patellar tendons in runners were similar to control tendons throughout the cross-country season but underwent collagen alignment (17% decrease) and tendon hypertrophy (21% increase). Our findings indicate that Achilles tendon structure in trained runners differs structurally from control tendons but is stable throughout training while patellar tendon structure changes in response to the transition in training volume between cross-country and track seasons. These findings expand upon prior reports that some degree of tendon remodeling may act as a protective adaptation for sport specific loading.NEW & NOTEWORTHY In this study we prospectively examined the Achilles and patellar tendon structure of distance runners to determine if continued training through multiple seasons elicits tendon remodeling or pathology. We found that Achilles and patellar tendons respond uniquely to the changing loads required during each season. Achilles tendon collagen alignment is mostly stable throughout the competitive cycle, but the patellar tendon structurally remodels following the transition from cross-country to track season.

2.
J Appl Physiol (1985) ; 125(2): 453-458, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771609

ABSTRACT

Achilles tendinopathy affects many running athletes and often leads to chronic pain and functional deficits. Although changes in tendon structure have been linked with tendinopathy, the effects of distance running on tendon structure are not well understood. Therefore, the purpose of this study was to characterize structural differences in the Achilles tendons in healthy young adults and competitive distance runners using quantitative ultrasound analyses. We hypothesized that competitive distance runners with no clinical signs or symptoms of tendinopathy would have quantitative signs of tendon damage, characterized by decreased collagen alignment and echogenicity, in addition to previous reports of thicker tendons. Longitudinal ultrasound images of the right Achilles tendon midsubstance were acquired in competitive distance runners and recreationally active adults. Collagen organization, mean echogenicity, and tendon thickness were quantified using image processing techniques. Clinical assessments confirmed that runners had no signs or symptoms of tendinopathy, and controls were only included if they had no history of Achilles tendon pain or injuries. Runner tendons were 40% less organized, 48% thicker, and 41% less echogenic compared with the control tendons ( P < 0.001). Young adults engaged in competitive distance running have structurally different tendons than recreationally active young adults. NEW & NOTEWORTHY In this study, we quantified the Achilles tendon substructure in distance runners, and a control group of young adults, to determine whether distance running elicits structural adaptations of the tendon. We found that competitive distance runners have structurally compromised Achilles tendons despite not showing any clinical signs or symptoms of tendon injury. These findings suggest that distance running may stimulate structural changes as a protective mechanism against tendon pain and dysfunction.


Subject(s)
Achilles Tendon/physiopathology , Running/physiology , Tendinopathy/physiopathology , Adult , Athletes , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Ultrasonography/methods , Young Adult
3.
J Neurotrauma ; 34(17): 2481-2494, 2017 09.
Article in English | MEDLINE | ID: mdl-28558476

ABSTRACT

Cognitive impairments are often experienced after a mild traumatic brain injury (mTBI). In the clinical arena, neuropsychological assessments are used frequently to detect cognitive deficits. Animal models of mTBI, however, rely on an assortment of behavioral tasks to assess cognitive outcome. Computer-based touchscreen systems have been developed for rodents and are hypothesized to offer a translational approach to evaluate cognitive function because of the similarities of tasks performed in rodents to those implemented in humans. While these touchscreen systems have been used in pre-clinical models of neurodegenerative diseases and psychiatric disorders, their use in assessing cognitive impairment after mTBI has not been investigated. We hypothesized that mTBI would result in impaired cognitive performance on touchscreen tasks, particularly those with hippocampal-based learning components, including the paired associate learning (PAL) task and the location discrimination (LD) task. Adult male, C57BL/6 mice received a single impact-acceleration mTBI. We found that training mice before injury to perform to criteria is arduous and that performance is sensitive to many environmental variables. Despite extensive optimization and training, mice failed to perform better than chance in the PAL paradigm. Alternatively, mice demonstrated some capacity to learn in the LD paradigm, but only with the easier stages of the task. The mTBI did not affect performance in the LD paradigm, however. Thus, we concluded that under the conditions presented here, the PAL and LD touchscreen tasks are not robust outcome measures for the evaluation of cognitive performance in C57BL/6 mice after a single impact-acceleration mTBI.


Subject(s)
Association Learning/physiology , Behavior, Animal/physiology , Brain Concussion/physiopathology , Cognitive Dysfunction/physiopathology , Discrimination, Psychological/physiology , Neuropsychological Tests/standards , Psychomotor Performance/physiology , Space Perception/physiology , Animals , Brain Concussion/complications , Cognitive Dysfunction/etiology , Disease Models, Animal , Electrical Equipment and Supplies , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL