Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 9): 1073-6, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26396852

ABSTRACT

The title compound, [FeCl2(C14H30N4)]PF6, contains Fe(3+) coordinated by the four nitro-gen atoms of an ethyl-ene cross-bridged cyclam macrocycle and two cis chloride ligands in a distorted octa-hedral environment. In contrast to other similar compounds this is a monomer. Inter-molecular C-H⋯Cl inter-actions exist in the structure between the complex ions. Comparison with the mononuclear Fe(2+) complex of the same ligand shows that the smaller Fe(3+) ion is more fully engulfed by the cavity of the bicyclic ligand. Comparison with the µ-oxido dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,11-dimethyl-1,4,8,11-tetra-aza-bicyclo-[6.6.2]hexa-decane prevent dimerization upon oxidation.

2.
J Biol Chem ; 287(29): 24460-72, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22648412

ABSTRACT

Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Benzofurans/pharmacology , Huntington Disease/metabolism , Mitochondria/metabolism , Sirtuin 3/metabolism , Stilbenes/pharmacology , Animals , Cell Line, Tumor , Energy Metabolism/drug effects , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...