Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230215, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113493

ABSTRACT

OBJECTIVE: The purpose of the present study was to assess the psychiatric manifestations of early to middle stages of fragile X-associated tremor-ataxia syndrome (FXTAS) and their relationship with executive function and FMR1 cytosine-guanine-guanine (CGG) repeat numbers across genders. METHODS: Cross-sectional data from 100 participants (62 men, 38 women; mean±SD age=67.11±7.90 years) with FXTAS stage 1, 2, or 3 were analyzed, including demographic information, cognitive measures, psychiatric assessments (Symptom Checklist-90-Revised and Behavioral Dyscontrol Scale-II [BDS-II]), and CGG repeat number. RESULTS: Participants with FXTAS stage 3 exhibited significantly worse psychiatric outcomes compared with participants with either stage 1 or 2, with distinct gender-related differences. Men showed differences in anxiety and hostility between stage 3 and combined stages 1 and 2, whereas women exhibited differences in anxiety, depression, interpersonal sensitivity, obsessive-compulsive symptoms, and somatization, as well as in the Global Severity Index, the Positive Symptom Distress Index, and the Positive Symptom Total. Among male participants, negative correlations were observed between BDS-II total scores and obsessive-compulsive symptoms, as well as between anxiety and CGG repeat number. CONCLUSIONS: These findings suggest that even at early FXTAS stages, patients have significant cognitive and other psychiatric symptoms, with notable gender-specific differences. This study underscores the clinical and prognostic relevance of comorbid psychiatric conditions in FXTAS, highlighting the need for early intervention and targeted support for individuals with relatively mild motor deficits.

2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125677

ABSTRACT

In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.


Subject(s)
Ataxia , Fragile X Syndrome , Glucuronidase , Klotho Proteins , Tremor , Humans , Male , Tremor/genetics , Fragile X Syndrome/genetics , Ataxia/genetics , Aged , Middle Aged , Glucuronidase/genetics , Apolipoproteins E/genetics , Penetrance , Genotype , Alleles , Aged, 80 and over , Genetic Predisposition to Disease
3.
Front Psychol ; 15: 1305597, 2024.
Article in English | MEDLINE | ID: mdl-38939222

ABSTRACT

Introduction: Metformin has been used as a targeted treatment to potentially improve cognition and slow the typical IQ decline that occurs during development among individuals with fragile X syndrome (FXS). In this follow-up study, we are following the trajectory of IQ and adaptive behavior changes over 1 to 3 years in individuals with FXS who are clinically treated with metformin in an open label trial. Method: Individuals with FXS ages 6 to 25 years (mean 13.15 ± 5.50) and nonverbal IQ mean 57.69 (±15.46) were treated for 1-3 years (1.88 ± 0.63). They all had a baseline IQ test using the Leiter-III non-verbal cognitive assessment and the Vineland-III adaptive behavior assessment before the start of metformin. Repeat Leiter-III and Vineland-III were completed after at least 1 year of metformin (500-1,000 mg/dose given twice a day). Result: There were no significant changes in non-verbal IQ or in the adaptive behavior measurements at FDR < 0.05. The findings thus far indicate that both IQ and adaptive behavior are stable over time, and we did not see a significant decline in either measure. Conclusion: Overall, the small sample size and short follow-up duration limit the interpretation of the effects of metformin on cognitive development and adaptive functioning. There is individual variability but overall for the group there was no significant decline in IQ or adaptive behavior.

4.
Genes (Basel) ; 15(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38927619

ABSTRACT

Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X messenger ribonucleoprotein 1 (FMR1) gene and known to be a leading cause of inherited intellectual disability globally. It results in a range of intellectual, developmental, and behavioral problems. Fragile X premutation-associated conditions (FXPAC), caused by a smaller CGG expansion (55 to 200 CGG repeats) in the FMR1 gene, are linked to other conditions that increase morbidity and mortality for affected persons. Limited research has been conducted on the burden, characteristics, diagnosis, and management of these conditions in Africa. This comprehensive review provides an overview of the current literature on FXS and FXPAC in Africa. The issues addressed include epidemiology, clinical features, discrimination against affected persons, limited awareness and research, and poor access to resources, including genetic services and treatment programs. This paper provides an in-depth analysis of the existing worldwide data for the diagnosis and treatment of fragile X disorders. This review will improve the understanding of FXS and FXPAC in Africa by incorporating existing knowledge, identifying research gaps, and potential topics for future research to enhance the well-being of individuals and families affected by FXS and FXPAC.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Fragile X Syndrome/genetics , Fragile X Syndrome/epidemiology , Humans , Fragile X Mental Retardation Protein/genetics , Africa/epidemiology , Mutation , Trinucleotide Repeat Expansion/genetics
5.
J Neurol Sci ; 461: 123056, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38772058

ABSTRACT

FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.


Subject(s)
Ataxia , Fragile X Mental Retardation Protein , Fragile X Syndrome , Glymphatic System , Magnetic Resonance Imaging , Tremor , Humans , Male , Fragile X Syndrome/genetics , Fragile X Syndrome/diagnostic imaging , Fragile X Syndrome/pathology , Middle Aged , Aged , Fragile X Mental Retardation Protein/genetics , Tremor/genetics , Tremor/diagnostic imaging , Tremor/pathology , Ataxia/genetics , Ataxia/diagnostic imaging , Ataxia/pathology , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Risk Factors , Heterozygote , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology , Brain/diagnostic imaging , Brain/pathology
6.
Ann Clin Transl Neurol ; 11(6): 1420-1429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717724

ABSTRACT

OBJECTIVE: Mitochondrial impairments have been implicated in the pathogenesis of Fragile X-associated tremor/ataxia syndrome (FXTAS) based on analysis of mitochondria in peripheral tissues and cultured cells. We sought to assess whether mitochondrial abnormalities present in postmortem brain tissues of patients with FXTAS are also present in plasma neuron-derived extracellular vesicles (NDEVs) from living carriers of fragile X messenger ribonucleoprotein1 (FMR1) gene premutations at an early asymptomatic stage of the disease continuum. METHODS: We utilized postmortem frozen cerebellar and frontal cortex samples from a cohort of eight patients with FXTAS and nine controls and measured the quantity and activity of the mitochondrial proteins complex IV and complex V. In addition, we evaluated the same measures in isolated plasma NDEVs by selective immunoaffinity capture targeting L1CAM from a separate cohort of eight FMR1 premutation carriers and four age-matched controls. RESULTS: Lower complex IV and V quantity and activity were observed in the cerebellum of FXTAS patients compared to controls, without any differences in total mitochondrial content. No patient-control differences were observed in the frontal cortex. In NDEVs, FMR1 premutation carriers compared to controls had lower activity of Complex IV and Complex V, but higher Complex V quantity. INTERPRETATION: Quantitative and functional abnormalities in mitochondrial electron transport chain complexes IV and V seen in the cerebellum of patients with FXTAS are also manifest in plasma NDEVs of FMR1 premutation carriers. Plasma NDEVs may provide further insights into mitochondrial pathologies in this syndrome and could potentially lead to the development of biomarkers for predicting symptomatic FXTAS among premutation carriers and disease monitoring.


Subject(s)
Ataxia , Extracellular Vesicles , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mitochondria , Tremor , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Fragile X Syndrome/physiopathology , Tremor/genetics , Tremor/metabolism , Tremor/physiopathology , Tremor/pathology , Extracellular Vesicles/metabolism , Ataxia/genetics , Ataxia/metabolism , Ataxia/pathology , Ataxia/physiopathology , Male , Aged , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Cerebellum/metabolism , Cerebellum/pathology , Aged, 80 and over , Brain/metabolism , Brain/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology
7.
J Autism Dev Disord ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653851

ABSTRACT

The purpose of this paper was to examine the physical, emotional, social and school functioning domains of quality of life of individuals with Fragile X Syndrome, in relation to mental health and sleep patterns to gain a better understanding of how these aspects are affected by the disorder. This study included 119 individuals with Fragile X Syndrome who were given different cognitive examinations by a neuropsychologist or by parent-proxy questionnaires. This study focused on the Pediatric Quality of Life Inventory (PedsQoL), the Anxiety, Depression and Mood Scale (ADAMS), the Children's Sleep Habits Questionnaire (CSHQ), but did include other cognitive tests (Vineland Adaptive Behaviour Scales, Nonverbal IQ, Autism Diagnostic Observation Schedule). We identified significant associations between decreases in emotional, social and school domains of PedsQoL and the ADAMS subtests of Generalized Anxiety, Manic/Hyperactivity and Obsessive/Compulsivity, with the subtest of Depressed Mood having associations with lower physical and emotional domains. We also identified a significant impact between CSHQ subtests of Sleep Anxiety, Night Wakings, Daytime Sleepiness, and Parasomnia with the emotional and school domains of PedsQoL. There were associations connecting school functioning with Bedtime Resistance, and additional associations connecting emotional functioning with Sleep Duration and Sleep Onset Delay. Physical functioning was also associated with Sleep Anxiety. Our study shows how mental health and sleep defects impact improper sleep patterns and mental health which leads to decreases in the quality of life for individuals with FXS, and how it is important to screen for these symptoms in order to alleviate issues.

8.
Focus (Am Psychiatr Publ) ; 22(2): 198-211, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680976

ABSTRACT

While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD. Appeared originally in Neurotherapeutics 2022; 19:248-262.

9.
J Mol Diagn ; 26(6): 498-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522837

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.


Subject(s)
DNA Methylation , Fibroblasts , Fragile X Mental Retardation Protein , Fragile X Syndrome , Leukocytes, Mononuclear , Mutation , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fibroblasts/metabolism , Leukocytes, Mononuclear/metabolism , Male , Fragile X Syndrome/genetics , Fragile X Syndrome/blood , Fragile X Syndrome/diagnosis , Female , Adult , RNA, Messenger/genetics , Adolescent , Trinucleotide Repeat Expansion/genetics , Young Adult , Intelligence/genetics , Middle Aged , Child
10.
Genes (Basel) ; 15(3)2024 03 03.
Article in English | MEDLINE | ID: mdl-38540390

ABSTRACT

Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability (ID) and single gene cause of autism. Although most patients with FXS and the full mutation (FM) have complete methylation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene, some have mosaicism in methylation and/or CGG repeat size, and few have completely unmethylated FM alleles. Those with a complete lack of methylation are rare, with little literature about the cognitive and behavioral phenotypes of these individuals. A review of past literature was conducted regarding individuals with unmethylated and mosaic FMR1 FM. We report three patients with an unmethylated FM FMR1 alleles without any behavioral or cognitive deficits. This is an unusual presentation for men with FM as most patients with an unmethylated FM and no behavioral phenotypes do not receive fragile X DNA testing or a diagnosis of FXS. Our cases showed that mosaic males with unmethylated FMR1 FM alleles may lack behavioral phenotypes due to the presence of smaller alleles producing the FMR1 protein (FMRP). However, these individuals could be at a higher risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) due to the increased expression of mRNA, similar to those who only have a premutation.


Subject(s)
Ataxia , Fragile X Syndrome , Tremor , Male , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/complications , DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Mutation
11.
Genes (Basel) ; 15(3)2024 03 13.
Article in English | MEDLINE | ID: mdl-38540415

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion/genetics , Leukocytes, Mononuclear/metabolism , Autism Spectrum Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Dev Med Child Neurol ; 66(7): 863-871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38385885

ABSTRACT

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a full mutation (> 200 CGG repeats) in the FMR1 gene. FXS is the leading cause of inherited intellectual disabilities and the most commonly known genetic cause of autism spectrum disorder. Children with FXS experience behavioral and sleep problems, anxiety, inattention, learning difficulties, and speech and language delays. There are no approved medications for FXS; however, there are several interventions and treatments aimed at managing the symptoms and improving the quality of life of individuals with FXS. A combination of non-pharmacological therapies and pharmacotherapy is currently the most effective treatment for FXS. Currently, several targeted treatments, such as metformin, sertraline, and cannabidiol, can be used by clinicians to treat FXS. Gene therapy is rapidly developing and holds potential as a prospective treatment option. Soon its efficacy and safety in patients with FXS will be demonstrated. WHAT THIS PAPER ADDS: Targeted treatment of fragile X syndrome (FXS) is the best current therapeutic approach. Gene therapy holds potential as a prospective treatment for FXS in the future.


Subject(s)
Fragile X Syndrome , Genetic Therapy , Fragile X Syndrome/therapy , Fragile X Syndrome/genetics , Fragile X Syndrome/drug therapy , Humans , Fragile X Mental Retardation Protein/genetics
13.
J Clin Med ; 13(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256638

ABSTRACT

BACKGROUND: Vestibular migraine (VM) is one of the most common causes of recurrent vertigo and presents with a history of spontaneous or positional vertigo with a history of migraine headaches. While research has identified a high prevalence of migraine headaches and vestibular deficits among fragile X premutation carriers, there has been no discussion about VM within this population. OBJECTIVE: This case series and review seeks to describe the clinical characteristics and pathophysiology of VM among individuals with the fragile X premutation. We also seek to discuss treatment and future steps in addressing VM in this population. METHODS: A review of the literature regarding vestibular migraine and presentation of migraine headaches and vestibular deficits among premutation carriers was performed. A detailed clinical history of migraine headaches and vertigo was obtained from three patients with the fragile X premutation seen by the senior author (RJH). RESULTS: All three cases first developed symptoms of migraine headaches earlier in life, with the development of VM near menopause. Two of the three cases developed progressive balance issues following the development of VM. All three cases found that their VM episodes were improved or resolved with pharmacological and/or lifestyle interventions. CONCLUSIONS: It is important to recognize VM among premutation carriers because beneficial treatments are available. Future studies are needed regarding the prevalence of VM and the relationship to subsequent FXTAS. The pathophysiology of VM remains uncertain but possibilities include mitochondrial abnormalities, cranial nerve VIII toxicity secondary to neurotoxic protein accumulation, and calcitonin gene-related peptide (CGRP) signaling dysfunction due to altered levels of fragile X messenger ribonucleoprotein (FMRP).

14.
Clin Dysmorphol ; 33(1): 9-15, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38038060

ABSTRACT

This study reports on 14 individuals with Fragile X syndrome from 3 Congolese Families. The majority (8/14) were males, with an average age of 18.4 (±11.1 [14-38]) years old. Typical dysmorphic characteristics of Fragile-X syndrome including elongated face, large and prominent ears were found in both males and females with the full mutation. Macroorchidism was found in all post-pubertal boys. The cognitive ability in our cohort varies widely ranging from mild (IQ 50-70) to moderate (IQ 35-49) intellectual disability (Average IQ of 60). All our female patients have ID.


Subject(s)
Fragile X Syndrome , Intellectual Disability , Male , Humans , Female , Adolescent , Young Adult , Adult , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Democratic Republic of the Congo/epidemiology , Intellectual Disability/genetics , Face , Cognition
15.
Mov Disord ; 39(3): 519-525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38124331

ABSTRACT

BACKGROUND: Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE: To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS: This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS: Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS: Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Fragile X Syndrome , Movement Disorders , Adult , Humans , Male , Executive Function/physiology , Tremor , Longitudinal Studies , Cross-Sectional Studies , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/complications , Ataxia , Movement Disorders/complications
16.
Cells ; 12(24)2023 12 05.
Article in English | MEDLINE | ID: mdl-38132093

ABSTRACT

Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.


Subject(s)
Leukocytes, Mononuclear , Tremor , Adult , Male , Female , Humans , Tremor/drug therapy , Tremor/genetics , Tremor/complications , Fragile X Mental Retardation Protein/genetics , Ataxia/drug therapy , Ataxia/genetics , Biomarkers
17.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139097

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Subject(s)
Fragile X Syndrome , Tremor , Humans , Tremor/genetics , Gray Matter/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Ataxia/genetics , Hippocampus/metabolism , Trinucleotide Repeat Expansion
18.
Colomb. med ; 54(2)jun. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1534285

ABSTRACT

Fragile X syndrome is caused by the expansion of CGG triplets in the FMR1 gene, which generates epigenetic changes that silence its expression. The absence of the protein coded by this gene, FMRP, causes cellular dysfunction, leading to impaired brain development and functional abnormalities. The physical and neurologic manifestations of the disease appear early in life and may suggest the diagnosis. However, it must be confirmed by molecular tests. It affects multiple areas of daily living and greatly burdens the affected individuals and their families. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism spectrum disorder; the diagnosis should be suspected in every patient with neurodevelopmental delay. Early interventions could improve the functional prognosis of patients with Fragile X syndrome, significantly impacting their quality of life and daily functioning. Therefore, healthcare for children with Fragile X syndrome should include a multidisciplinary approach.


El síndrome de X frágil es causado por la expansión de tripletas CGG en el gen FMR1, el cual genera cambios epigenéticos que silencian su expresión. La ausencia de la proteína codificada por este gen, la FMRP, causa disfunción celular, llevando a deficiencia en el desarrollo cerebral y anormalidades funcionales. Las manifestaciones físicas y neurológicas de la enfermedad aparecen en edades tempranas y pueden sugerir el diagnóstico. Sin embargo, este debe ser confirmado por pruebas moleculares. El síndrome afecta múltiples aspectos de la vida diaria y representa una alta carga para los individuos afectados y para sus familias. El síndrome de C frágil es la causa monogénica más común de discapacidad intelectual y trastornos del espectro autista; por ende, el diagnóstico debe sospecharse en todo paciente con retraso del neurodesarrollo. Intervenciones tempranas podrían mejorar el pronóstico funcional de pacientes con síndrome de X frágil, impactando significativamente su calidad de vida y funcionamiento. Por lo tanto, la atención en salud de niños con síndrome de X frágil debe incluir un abordaje multidisciplinario.

19.
Gac. méd. Méx ; 156(1): 60-66, ene.-feb. 2020. tab, graf
Article in English, Spanish | LILACS | ID: biblio-1249871

ABSTRACT

Resumen El síndrome X frágil es la condición monogenética que produce más casos de autismo y de discapacidad intelectual. La repetición de tripletes CGG (> 200) y su metilación conllevan el silenciamiento del gen FMR1. La proteína FMRP (producto del gen FMR1) interacciona con los ribosomas, controlando la traducción de mensajeros específicos y su pérdida produce alteraciones de la conectividad sináptica. El tamizaje de síndrome X frágil se realiza por reacción en cadena de la polimerasa. La recomendación actual de la Academia Americana de Pediatría es realizar pruebas a quienes presenten discapacidad intelectual, retraso global del desarrollo o antecedentes familiares de afección por la mutación o premutación. Países hispanos como Colombia, Chile y España reportan altas prevalencias de síndrome X frágil y han creado asociaciones o corporaciones nacionales de X frágil que buscan acercar a los pacientes a redes disponibles de diagnóstico y tratamiento.


Abstract Fragile X syndrome is the monogenetic condition that produces more cases of autism and intellectual disability. The repetition of CGG triplets (> 200) and their methylation entail the silencing of the FMR1 gene. The FMRP protein (product of the FMR1 gene) interacts with ribosomes by controlling the translation of specific messengers, and its loss causes alterations in synaptic connectivity. Screening for fragile X syndrome is performed by polymerase chain reaction. Current recommendation of the American Academy of Pediatrics is to test individuals with intellectual disability, global developmental retardation or with a family history of presence of the mutation or premutation. Hispanic countries such as Colombia, Chile and Spain report high prevalence of fragile X syndrome and have created fragile X national associations or corporations that seek to bring patients closer to available diagnostic and treatment networks.


Subject(s)
Humans , Male , Child, Preschool , Autistic Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Intellectual Disability/genetics , Pedigree , Phenotype , Ribosomes/metabolism , Attention Deficit Disorder with Hyperactivity/genetics , Sex Factors , Genetic Testing , Synaptic Transmission , Gene Silencing , Fragile X Mental Retardation Protein/metabolism , Checklist , Fragile X Syndrome/complications , Fragile X Syndrome/diagnosis , Fragile X Syndrome/therapy , Mutation
20.
Rev. neurol. (Ed. impr.) ; 68(5): 199-206, 1 mar., 2019. ilus, graf, tab
Article in Spanish | IBECS | ID: ibc-180389

ABSTRACT

El síndrome de temblor y ataxia asociado al X frágil (FXTAS) es una enfermedad neurodegenerativa relacionada con la premutación del gen FMR1. Los alelos con premutación (55-200 repeticiones de CGG), al contrario de los alelos con mutación completa (más de 200 repeticiones CGG), tienen una producción excesiva de ARN mensajero y unos niveles normales o reducidos de proteína. El FXTAS afecta al 40% de los hombres y al 16% de las mujeres portadores de la premutación de FMR1. Se presenta con una amplia variedad de signos neurológicos, como temblor de intención, ataxia cerebelosa, parkinsonismo, déficit en la función ejecutiva, neuropatía periférica y deterioro cognitivo que conduce a la demencia, entre otros. En esta revisión se presenta lo que hasta ahora se conoce del mecanismo molecular, los hallazgos radiológicos y la patología, así como también la complejidad del diagnóstico y el tratamiento del FXTAS


The fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease associated with the repetition of CGG triplets (55-200 CGG repetitions) in the FMR1 gene. The premutation of the FMR1 gene, contrasting with the full mutation (more than 200 CGG repetitions), presents an increased production of messenger and a similar or slightly decreased production of FMRP protein. FXTAS affects 40% of men and 16% of women carriers of the premutation. It presents with a wide constellation of neurological signs such as intention tremor, cerebellar ataxia, parkinsonism, executive function deficits, peripheral neuropathy and cognitive decline leading to dementia among others. In this review, we present what is currently known about the molecular mechanism, the radiological findings and the pathology, as well as the complexity of the diagnosis and management of FXTAS


Subject(s)
Humans , Tremor/complications , Ataxia/complications , Fragile X Syndrome/complications , Neurodegenerative Diseases/therapy , RNA, Messenger/analysis , Antiparkinson Agents/therapeutic use , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL