Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Neurobiol Stress ; 30: 100621, 2024 May.
Article in English | MEDLINE | ID: mdl-38516563

ABSTRACT

Astrocytes have been implicated in stress responses and produce ciliary neurotrophic factor (CNTF), which we have shown in the mouse medial amygdala (MeA) to promote passive stress coping response only in females. Pharmacological inhibition of focal adhesion kinase (FAK) upregulates CNTF expression. Here, we found that inducible knockout of FAK in astrocytes or systemic treatment with an FAK inhibitor increased passive coping behavior, i.e., immobility, in an acute forced swim stress test in female, but not male, mice. Strikingly, four weeks of chronic unpredictable stress (CUS) did not further increase passive coping in female astrocytic FAK knockout mice, whereas it exacerbated it in female wildtype mice and male mice of both genotypes. These data suggest that astrocyte FAK inhibition is required for chronic stress-induced passive coping in females. Indeed, CUS reduced phospho-FAK and increased CNTF in the female MeA. Progesterone treatment after ovariectomy activated amygdala FAK and alleviated ovariectomy-induced passive coping in wildtype, but not astrocytic FAK knockout females. This suggests that progesterone-mediated activation of FAK in astrocytes reduces female stress responses. Finally, astrocytic FAK knockout or FAK inhibitor treatment increased CNTF expression in the MeA of both sexes, although not in the hippocampus. As mentioned, MeA CNTF promotes stress responses only in females, which may explain the female-specific role of astrocytic FAK inhibition. Together, this study reveals a novel female-specific progesterone-astrocytic FAK pathway that counteracts CNTF-mediated stress responses and points to opportunities for developing treatments for stress-related disorders in women.

2.
J Cereb Blood Flow Metab ; 42(10): 1961-1974, 2022 10.
Article in English | MEDLINE | ID: mdl-35702047

ABSTRACT

We found that blood vitronectin (VTN) leaks into the brain and exacerbates tissue loss after stroke by increasing pro-inflammatory IL-6 expression in female, but not male, mice. VTN signals through integrins and downstream focal adhesion kinase (FAK). Here, a two day systemic treatment with a small molecule FAK inhibitor starting 6 h after middle cerebral artery occlusion reduced ipsilateral brain injury size by ∼40-45% at 7 and 14 d, as well as inflammation and motor dysfunction in wild-type female, but not male, mice. FAK inhibition also reduced IL-6 expression in the injured female striatum at 24 h by 62%. Inducible selective gene deletion of FAK in astrocytes also reduced acute IL-6 expression by 72% only in females, and mitigated infarct size by ∼80% and inflammation at 14 d after stroke. Lastly, VTN-/- females had better outcomes, but FAK inhibitor treatment had no additional protective or anti-inflammatory effects. Altogether, this suggests that VTN is detrimental in females primarily through FAK and that FAK inhibition provides neuroprotection (cerebroprotection) by reducing VTN-induced IL-6 expression in astrocytes. Thus, VTN signaling can be targeted to mitigate harmful inflammation with relevance to treatments for women with ischemic stroke, who often have worse outcomes than men.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Anti-Inflammatory Agents , Brain Ischemia/drug therapy , Female , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Inflammation/drug therapy , Inflammation/genetics , Integrins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Neuroprotection , Vitronectin/genetics , Vitronectin/metabolism
3.
Physiol Rep ; 10(9): e15301, 2022 05.
Article in English | MEDLINE | ID: mdl-35531929

ABSTRACT

Vitronectin (VTN) is a glycoprotein enriched in the blood and activates integrin receptors. VTN blood levels increase only in female mice 24 h after an ischemic stroke and exacerbate brain injury through IL-6-driven inflammation, but the VTN induction mechanism is unknown. Here, a 30 min middle cerebral artery occlusion (MCAO) in female mice induced VTN protein in the liver (normally the main source) in concert with plasma VTN. Male mice were excluded as VTN is not induced after stroke. MCAO also increased plasma VTN levels after de novo expression of VTN in the liver of VTN-/- female mice, using a hepatocyte-specific (SERPINA1) promoter. MCAO did not affect SERPINA1 or VTN mRNA in the liver, brain, or several peripheral organs, or platelet VTN, compared to sham mice. Thus, hepatocytes are the source of stroke-induced increases in plasma VTN, which is independent of transcription. The cholinergic innervation by the parasympathetic vagus nerve is a potential source of brain-liver signaling after stroke. Right-sided vagotomy at the cervical level led to increased plasma VTN levels, suggesting that VTN release is inhibited by vagal tone. Co-culture of hepatocytes with cholinergic neurons or treatment with acetylcholine, but not noradrenaline (sympathetic transmitter), suppressed VTN expression. Hepatocytes have muscarinic receptors and the M1/M3 agonist bethanechol decreased VTN mRNA and protein release in vitro via M1 receptors. Finally, systemic bethanechol treatment blocked stroke-induced plasma VTN. Thus, VTN translation and release are inhibited by muscarinic signaling from the vagus nerve and presents a novel target for lessening detrimental VTN expression.


Subject(s)
Stroke , Vitronectin , Animals , Bethanechol , Cholinergic Agents , Female , Infarction, Middle Cerebral Artery , Integrins , Liver/metabolism , Mice , RNA, Messenger , Stroke/blood , Vagus Nerve/physiology , Vitronectin/blood
4.
Neurobiol Stress ; 17: 100435, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146079

ABSTRACT

Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF-/- littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF-/- mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women.

5.
Stem Cell Res ; 49: 102061, 2020 12.
Article in English | MEDLINE | ID: mdl-33130470

ABSTRACT

Constant neuroregeneration in adult olfactory epithelium maintains olfactory function by basal stem cell proliferation and differentiation to replace lost olfactory sensory neurons (OSNs). Understanding the mechanisms regulating this process could reveal potential therapeutic targets for stimulating adult olfactory neurogenesis under pathological conditions and aging. Ciliary neurotrophic factor (CNTF) in astrocytes promotes forebrain neurogenesis but its function in the olfactory system is unknown. Here, we show in mouse olfactory epithelium that CNTF is expressed in horizontal basal cells, olfactory ensheathing cells (OECs) and a small subpopulation of OSNs. CNTF receptor alpha was expressed in Mash1-positive globose basal cells (GBCs) and OECs. Thus, CNTF may affect GBCs in a paracrine manner. CNTF-/- mice did not display altered GBC proliferation or olfactory function, suggesting that CNTF is not involved in basal olfactory renewal or that they developed compensatory mechanisms. Therefore, we tested the effect of increased CNTF in wild type mice. Intranasal instillation of a focal adhesion kinase (FAK) inhibitor, FAK14, upregulated CNTF expression. FAK14 also promoted GBC proliferation, neuronal differentiation and basal stem cell self-renewal but had no effective in CNTF-/- mice, suggesting that FAK inhibition promotes olfactory neuroregeneration through CNTF, making them potential targets to treat sensorineural anosmia due to OSN loss.


Subject(s)
Cell Self Renewal , Ciliary Neurotrophic Factor , Animals , Ciliary Neurotrophic Factor/genetics , Focal Adhesion Protein-Tyrosine Kinases , Mice , Nerve Regeneration , Neurogenesis , Olfactory Mucosa
6.
Stroke ; 51(5): 1587-1595, 2020 05.
Article in English | MEDLINE | ID: mdl-32312218

ABSTRACT

Background and Purpose- Women have worse stroke outcomes than men, especially after menopause. Few studies have focused on female-specific mechanisms, other than hormones. We investigated the role of the blood protein VTN (vitronectin) after ischemic stroke in mice. Methods- Adult male and female VTN knockout and wild-type littermates and C57BL/6 mice received a middle cerebral artery occlusion and the injured brain tissue analyzed 24 hours to 3 weeks later for cell loss and inflammation, as well as neurological function. Blood VTN levels were measured before and after stroke. Results- Intravenously injected VTN leaked extensively from bloodstream into brain infarct and penumbra by 24 hours after stroke. Strikingly, VTN was detrimental in female, but not male, mice, as shown by reduced brain injury (26.2±2.6% versus 13.4±3.8%; P=0.018; n=6 and 5) and forelimb dysfunction in female VTN knockout mice. Stroke increased plasma VTN 2- to 8-fold at 24 hours in females (36±4 versus 145±24 µg/mL; P<0.0001; n=10 and 7), but not males (62±8 versus 68±6; P>0.99; n=10 and 7), and returned to control levels by 7 days. Individually variable VTN levels at 24 hours correlated with stroke-induced brain injury at 7 days only in females. VTN promoted stroke-induced microglia/macrophage activation and leukocyte infiltration in females. Proinflammatory IL (interleukin)-6 greatly increased in the striatum at 24 hours in wild-type mice but was increased ≈60% less in female (739±159 versus 268±111; P=0.02; n=7 and 6), but not male (889±178 versus 1179±295; P=0.73; n=10 and 11), knockout mice. In individual wild-type females, plasma VTN levels correlated with striatal IL-6 expression at 24 hours. The female-specific effect of VTN-induced IL-6 expression following stroke was not due to gonadal hormones, as shown by ovariectomy and castration. Lastly, intrastriatal injection of IL-6 in female mice immediately before stroke reversed the VTN knockout phenotypes of reduced brain injury and microglia/macrophage activation. Conclusions- VTN plays a novel sexually dimorphic detrimental pathophysiological role in females and might ultimately be a therapeutic target to improve stroke outcomes in women.


Subject(s)
Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/genetics , Inflammation/genetics , Interleukin-6/genetics , Vitronectin/genetics , Animals , Ciliary Neurotrophic Factor/genetics , Ciliary Neurotrophic Factor/metabolism , Female , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Inflammation/metabolism , Interleukin-6/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , RNA, Messenger/metabolism , Sex Factors , Stroke/genetics , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology , Vitronectin/blood , Vitronectin/metabolism
7.
Cell Commun Signal ; 18(1): 64, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312272

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

8.
Exp Neurol ; 323: 113088, 2020 01.
Article in English | MEDLINE | ID: mdl-31678139

ABSTRACT

Vitronectin (VTN) is a blood protein produced mainly by the liver. We show that VTN leaks from the bloodstream into the injury site and neighboring subventricular zone (SVZ) following ischemic stroke (middle cerebral artery occlusion, MCAO) in adult mice. MCAO is known to increase neurogenesis after stroke. VTN inhibits this response in females, but not in males, as shown by ~70% more stroke-induced SVZ neurogenesis in female VTN-/- mice at 14 d. In female VTN-/- mice, stroke-induced expression of interleukin-6 (IL-6) at 24 h was reduced in the SVZ. The closely related leukemia inhibitory factor (LIF) or pro-neurogenic ciliary neurotrophic factor (CNTF) were not affected. The female-specific effect of VTN on IL-6 expression was not due to sex hormones, as shown by ovariectomy and castration. IL-6 injection next to the SVZ reversed the MCAO-induced increase in neurogenesis seen in VTN-/- mice. Our in vitro and vivo data suggest that plasma VTN activates focal adhesion kinase (FAK) in the SVZ following MCAO, which reduces IL-6 expression in astrocytes but increases it in other cells such as microglia/macrophages. Inducible conditional astrocytic FAK deletion increased MCAO-induced IL-6 expression in females at 24 h and blocked MCAO-induced neurogenesis at 14 d, confirming a key detrimental role of IL-6. Collectively, these data suggest that leakage of VTN into the SVZ reduces the neurogenic response to stroke in female mice by promoting IL-6 expression. Reducing VTN or VTN signaling may be an approach to promote neurogenesis for neuroprotection and cell replacement after stroke in females.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Interleukin-6/metabolism , Neurogenesis/physiology , Stroke/metabolism , Vitronectin/metabolism , Animals , Female , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sex Characteristics , Signal Transduction/physiology , Stroke/physiopathology
9.
Psychoneuroendocrinology ; 100: 96-105, 2019 02.
Article in English | MEDLINE | ID: mdl-30299260

ABSTRACT

Ciliary neurotrophic factor (CNTF) is produced by astrocytes and promotes neurogenesis and neuroprotection. Little is known about the role of CNTF in affective behavior. We investigated whether CNTF affects depressive- and anxiety-like behavior in adult mice as tested in the forced swim, sucrose preference and elevated-T maze tests. Female wild type CNTF+/+ mice more readily developed behavioral despair with increased immobility time and decreased latency to immobility in the forced swim test than male CNTF+/+ littermates. The lack of CNTF in CNTF-/- mice had an opposite effect on depressive-like behavior in female mice (reduced immobility time and increased sucrose preference) vs. male mice (increased immobility time). Female wildtype mice expressed more CNTF in the amygdala than male mice. Ovariectomy increased CNTF expression, as well as immobility time, which was significantly reduced in CNTF-/- mice, suggesting that CNTF mediates overiectomy-induced immobility time, possibly in the amygdala. Progesterone but not 17-ß estradiol inhibited CNTF expression in cultured C6 astroglioma cells. Progesterone treatment also reduced CNTF expression in the amygdala and decreased immobility time in female CNTF+/+ but not in CNTF-/- mice. Castration did not alter CNTF expression in males nor their behavior. Lastly, there were no effects of CNTF on the elevated T-maze, a behavioral test of anxiety, suggesting that a different mechanism may underlie anxiety-like behavior. This study reveals a novel CNTF-mediated mechanism in stress-induced depressive-like behavior and points to opportunities for sex-specific treatments for depression, e.g. progesterone in females and CNTF-stimulating drugs in males.


Subject(s)
Ciliary Neurotrophic Factor/physiology , Depression/genetics , Animals , Astrocytes/metabolism , Astrocytes/physiology , Behavior, Animal/physiology , Ciliary Neurotrophic Factor/genetics , Depression/pathology , Depression/physiopathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Sex Characteristics , Tumor Cells, Cultured
10.
Exp Neurol ; 312: 20-32, 2019 02.
Article in English | MEDLINE | ID: mdl-30408465

ABSTRACT

Vitronectin (VTN) is a glycoprotein in the blood and affects hemostasis. VTN is also present in the extracellular matrix of various organs but little is known about its function in healthy adult tissues. We show, in adult mice, that VTN is uniquely expressed by approximately half of the pericytes of subventricular zone (SVZ) where neurogenesis continues throughout life. Intracerebral VTN antibody injection or VTN knockout reduced neurogenesis as well as expression of pro-neurogenic CNTF, and anti-neurogenic LIF and IL-6. Conversely, injections of VTN, or plasma from VTN+/+, but not VTN-/- mice, increased these cytokines. VTN promoted SVZ neurogenesis when LIF and IL-6 were suppressed by co-administration of a gp130 inhibitor. Unexpectedly, VTN inhibited FAK signaling and VTN-/- mice had increased FAK signaling in the SVZ. Further, an FAK inhibitor or VTN increased CNTF expression, but not in conditional astrocytic FAK knockout mice, suggesting that VTN increases CNTF through FAK inhibition in astrocytes. These results identify a novel role of pericyte-derived VTN in the brain, where it regulates SVZ neurogenesis through co-expression of CNTF, LIF and IL-6. VTN-integrin-FAK and gp130 signaling may provide novel targets to induce neurogenesis for cell replacement therapies.


Subject(s)
Ciliary Neurotrophic Factor/biosynthesis , Neurogenesis/physiology , Pericytes/metabolism , Prosencephalon/metabolism , Vitronectin/biosynthesis , Animals , Antibodies/administration & dosage , Brain/drug effects , Brain/metabolism , Humans , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Pericytes/drug effects , Prosencephalon/drug effects , Vitronectin/antagonists & inhibitors
11.
Glia ; 66(11): 2456-2469, 2018 11.
Article in English | MEDLINE | ID: mdl-30500112

ABSTRACT

Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.


Subject(s)
Astrocytes/metabolism , Ciliary Neurotrophic Factor/metabolism , Focal Adhesion Kinase 1/metabolism , Lateral Ventricles/cytology , MAP Kinase Signaling System/physiology , Neurogenesis/physiology , Animals , Anthracenes/pharmacology , Astrocytes/drug effects , Cell Line, Tumor , Ciliary Neurotrophic Factor/genetics , Cytokines/genetics , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Ki-67 Antigen/metabolism , Lateral Ventricles/drug effects , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Phosphorylation/drug effects , Phosphorylation/genetics , Time Factors
12.
J Cell Sci ; 131(3)2018 02 02.
Article in English | MEDLINE | ID: mdl-29222114

ABSTRACT

We defined how blood-derived vitronectin (VTN) rapidly and potently activates leukemia inhibitory factor (LIF) and pro-inflammatory interleukin 6 (IL-6) in vitro and after vascular injury in the brain. Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or collagen-I) substantially increased LIF and IL-6 within 4 h in C6-astroglioma cells, while VTN-/- mouse plasma was less effective than that from wild-type mice. LIF and IL-6 were induced by intracerebral injection of recombinant human (rh)VTN in mice, but induction seen upon intracerebral hemorrhage was less in VTN-/- mice than in wild-type littermates. In vitro, VTN effects were inhibited by RGD, αvß3 and αvß5 integrin-blocking peptides and antibodies. VTN activated focal adhesion kinase (FAK; also known as PTK2), whereas pharmacological- or siRNA-mediated inhibition of FAK, but not PYK2, reduced the expression of LIF and IL-6 in C6 and endothelial cells and after traumatic cell injury. Dominant-negative FAK (Y397F) reduced the amount of injury-induced LIF and IL-6. Pharmacological inhibition or knockdown of uPAR (also known as PLAUR), which binds VTN, also reduced cytokine expression, possibly through a common target of uPAR and integrins. We propose that VTN leakage into tissues promotes inflammation. Integrin-FAK signaling is therefore a novel IL-6 and LIF regulation mechanism relevant to the inflammation and stem cell fields.


Subject(s)
Brain/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Interleukin-6/metabolism , Leukemia Inhibitory Factor/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Vitronectin/blood , Animals , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Humans , Integrins/metabolism , Mice, Inbred C57BL , Models, Biological , Protein Kinase Inhibitors/pharmacology , Rats , Up-Regulation
13.
Cell Signal ; 36: 154-162, 2017 08.
Article in English | MEDLINE | ID: mdl-28495589

ABSTRACT

Excessive endoplasmic reticulum (ER) stress leads to cell loss in many diseases, e.g., contributing to endothelial cell loss after spinal cord injury. Here, we determined whether ER stress-induced mitochondrial dysfunction could be explained by interruption of the focal adhesion kinase (FAK)-mitochondrial STAT3 pathway we recently discovered. ER stress was induced in brain-derived mouse bEnd5 endothelial cells by thapsigargin or tunicamycin and caused apoptotic cell death over a 72h period. In concert, ER stress caused mitochondrial dysfunction as shown by reduced bioenergetic function, loss of mitochondrial membrane potential and increased mitophagy. ER stress caused a reduction in mitochondrial phosphorylated S727-STAT3, known to be important for maintaining mitochondrial function. Normal activation or phosphorylation of the upstream cytoplasmic FAK was also reduced, through mechanisms that involve tyrosine phosphatases and calcium signaling, as shown by pharmacological inhibitors, bisperoxovanadium (bpV) and 2-aminoethoxydiphenylborane (APB), respectively. APB mitigated the reduction in FAK and STAT3 phosphorylation, and improved endothelial cell survival caused by ER stress. Transfection of cells rendered null for STAT3 using CRISPR technology with STAT3 mutants confirmed the specific involvement of S727-STAT3 inhibition in ER stress-mediated cell loss. These data suggest that loss of FAK signaling during ER stress causes mitochondrial dysfunction by reducing the protective effects of mitochondrial STAT3, leading to endothelial cell death. We propose that stimulation of the FAK-STAT3 pathway is a novel therapeutic approach against pathological ER stress.


Subject(s)
Endoplasmic Reticulum Stress , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mitochondria/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Endothelial Cells/drug effects , Mice , Mitochondria/drug effects , Mitophagy/drug effects , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Phosphoserine/metabolism , Signal Transduction/drug effects
15.
Cell Commun Signal ; 14(1): 32, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27978828

ABSTRACT

BACKGROUND: STAT3 is increasingly becoming known for its non-transcriptional regulation of mitochondrial bioenergetic function upon activation of its S727 residue (S727-STAT3). Lengthy mitochondrial dysfunction can lead to cell death. We tested whether an integrin-FAK-STAT3 signaling pathway we recently discovered regulates mitochondrial function and cell survival, and treatments thereof. METHODS: Cultured mouse brain bEnd5 endothelial cells were treated with integrin, FAK or STAT3 inhibitors, FAK siRNA, as well as integrin and STAT3 activators. STAT3 null cells were transfected with mutant STAT3 plasmids. Outcome measures included oxygen consumption rate for mitochondrial bioenergetics, Western blotting for protein phosphorylation, mitochondrial membrane potential for mitochondrial integrity, ROS production, and cell counts. RESULTS: Vitronectin-dependent mitochondrial basal respiration, ATP production, and maximum reserve and respiratory capacities were suppressed within 4 h by RGD and αvß3 integrin antagonist peptides. Conversely, integrin ligands vitronectin, laminin and fibronectin stimulated mitochondrial function. Pharmacological inhibition of FAK completely abolished mitochondrial function within 4 h while FAK siRNA treatments confirmed the specificity of FAK signaling. WT, but not S727A functionally dead mutant STAT3, rescued bioenergetics in cells made null for STAT3 using CRISPR-Cas9. STAT3 inhibition with stattic in whole cells rapidly reduced mitochondrial function and mitochondrial pS727-STAT3. Stattic treatment of isolated mitochondria did not reduce pS727 whereas more was detected upon phosphatase inhibition. This suggests that S727-STAT3 is activated in the cytoplasm and is short-lived upon translocation to the mitochondria. FAK inhibition reduced pS727-STAT3 within mitochondria and reduced mitochondrial function in a non-transcriptional manner, as shown by co-treatment with actinomycin. Treatment with the small molecule bryostatin-1 or hepatocyte growth factor (HGF), which indirectly activate S727-STAT3, preserved mitochondrial function during FAK inhibition, but failed in the presence of the STAT3 inhibitor. FAK inhibition induced loss of mitochondrial membrane potential, which was counteracted by bryostatin, and increased superoxide and hydrogen peroxide production. Bryostatin and HGF reduced the substantial cell death caused by FAK inhibition over a 24 h period. CONCLUSION: These data suggest that extracellular matrix molecules promote STAT3-dependent mitochondrial function and cell survival through integrin-FAK signaling. We furthermore show a new treatment strategy for cell survival using S727-STAT3 activators.


Subject(s)
Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrins/metabolism , Mitochondria/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Cell Death , Cell Line, Tumor , Endothelial Cells/cytology , Energy Metabolism , Mice , Phosphorylation , Reactive Oxygen Species/metabolism
16.
J Neurotrauma ; 33(3): 269-77, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26415041

ABSTRACT

Primary and secondary ischemia after spinal cord injury (SCI) contributes to tissue and axon degeneration, which may result from decreased energy substrate availability for cellular and axonal mitochondrial adenosine triphosphate (ATP) production. Therefore, providing spinal tissue with an alternative energy substrate during ischemia may be neuroprotective after SCI. To assess this, rats received a mild contusive SCI (120 kdyn, Infinite Horizons impactor) at thoracic level 9 (T9), which causes loss of ∼ 80% of the ascending sensory dorsal column axonal projections to the gracile nucleus. Immediately afterwards, the energy substrate acetyl-L-carnitine (ALC; 1 mg/day) or phosphate-buffered saline (PBS) was infused intrathecally (sub-arachnoid) for 6 days via an L5/6 catheter attached to a subcutaneous Alzet pump. ALC treatment improved overground locomotor function (Basso-Beattie-Breshnahan [BBB] score 18 vs. 13) at 6 days, total spared epicenter (71% vs. 57%) and penumbra white matter (90% vs. 85%), ventral penumbra microvessels (108% vs. 79%), and penumbra motor neurons (42% vs. 15%) at 15 days post-SCI, compared with PBS treatment. However, the ascending sensory projections (anterogradely traced with cholera toxin B from the sciatic nerves) and dorsal column white matter and perfused blood vessels were not protected. Furthermore, grid walking, a task we have shown to be dependent on dorsal column function, was not improved. Thus, mitochondrial substrate replacement may only be efficacious in areas of lesser or temporary ischemia, such as the ventral spinal cord and injury penumbra in this study. The current data also support our previous evidence that microvessel loss is central to secondary tissue degeneration.


Subject(s)
Acetylcarnitine/pharmacology , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Vitamin B Complex/pharmacology , Acetylcarnitine/administration & dosage , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Female , Infusions, Spinal , Neuroprotective Agents/administration & dosage , Rats , Rats, Sprague-Dawley , Thoracic Vertebrae , Vitamin B Complex/administration & dosage
17.
Exp Neurol ; 256: 25-38, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690303

ABSTRACT

CD36 is a pleiotropic receptor involved in several pathophysiological conditions, including cerebral ischemia, neurovascular dysfunction and atherosclerosis, and recent reports implicate its involvement in the endoplasmic reticulum stress response (ERSR). We hypothesized that CD36 signaling contributes to the inflammation and microvascular dysfunction following spinal cord injury. Following contusive injury, CD36(-/-) mice demonstrated improved hindlimb functional recovery and greater white matter sparing than CD36(+/+) mice. CD36(-/-) mice exhibited a reduced macrophage, but not neutrophil, infiltration into the injury epicenter. Fewer infiltrating macrophages were either apoptotic or positive for the ERSR marker, phospho-ATF4. CD36(-/-) mice also exhibited significant improvements in injury heterodomain vascularity and function. These microvessels accumulated less of the oxidized lipid product 4-hydroxy-trans-2-nonenal (4HNE) and exhibited a reduced ERSR, as detected by vascular phospho-ATF4, CHOP and CHAC-1 expression. In cultured primary endothelial cells, deletion of CD36 diminished 4HNE-induced phospho-ATF4 and CHOP expression. A reduction in phospho-eIF2α and subsequent increase in KDEL-positive, ER-localized proteins suggest that 4HNE-CD36 signaling facilitates the detection of misfolded proteins upstream of eIF2α phosphorylation, ultimately leading to CHOP-induced apoptosis. We conclude that CD36 deletion modestly, but significantly, improves functional recovery from spinal cord injury by enhancing vascular function and reducing macrophage infiltration. These phenotypes may, in part, stem from reduced ER stress-induced cell death within endothelial and macrophage cells following injury.


Subject(s)
CD36 Antigens/genetics , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Animals , Apoptosis/genetics , CD36 Antigens/metabolism , Endoplasmic Reticulum Stress/genetics , Female , Locomotion/genetics , Locomotion/physiology , Macrophages/metabolism , Mice , Mice, Knockout , Nerve Fibers, Myelinated/metabolism , Phosphorylation , Recovery of Function/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
18.
Transl Stroke Res ; 4(5): 533-45, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24312160

ABSTRACT

Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.


Subject(s)
Ciliary Neurotrophic Factor/biosynthesis , Infarction, Middle Cerebral Artery/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Stroke/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Affinity Labels/pharmacology , Animals , Cytokines/metabolism , Disease Models, Animal , Indicators and Reagents/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurogenesis/drug effects , Neuroprotective Agents/pharmacology , Rosaniline Dyes/pharmacology
19.
Exp Neurol ; 249: 59-73, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23978615

ABSTRACT

The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and an ~70% loss of the sensory axons by 24 h. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 h. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 h. EB also caused an ~75% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R(2) = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons.


Subject(s)
Axons/pathology , Microcirculation/physiology , Nerve Degeneration/pathology , Posterior Horn Cells/pathology , Sensory Receptor Cells/pathology , Spinal Cord Injuries/pathology , Animals , Axons/metabolism , Female , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Posterior Horn Cells/blood supply , Posterior Horn Cells/metabolism , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae
20.
Cell Commun Signal ; 11: 35, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23693126

ABSTRACT

BACKGROUND: Ciliary neurotrophic factor (CNTF) expression is repressed in astrocytes by neuronal contact in the CNS and is rapidly induced by injury. Here, we defined an inhibitory integrin signaling pathway. RESULTS: The integrin substrates laminin, fibronectin and vitronectin, but not collagen, thrombospondin or fibrinogen, reduced CNTF expression in C6 astroglioma cells. Antibodies against αv and ß5, but not α6 or ß1, integrin induced CNTF. Together, the ligand and antibody specificity suggests that CNTF is repressed by αvß5 integrin. Antibodies against Thy1, an abundant neuronal surface protein whose function is unclear, induced CNTF in neuron-astrocyte co-cultures indicating that it is a neuroglial CNTF repressor. Inhibition of the integrin signaling molecule Focal Adhesion Kinase (FAK) or the downstream c-Jun N-terminal kinase (JNK), but not extracellular regulated kinase (ERK) or p38 MAPK, greatly induced CNTF mRNA and protein expression within 4 hours. This selective inhibitory pathway phosphorylated STAT3 on its inhibitory ser-727 residue interfering with activity of the pro-transcription Tyr-705 residue. STAT3 can activate CNTF transcription because it bound to its promoter and FAK antagonist-induced CNTF was reduced by blocking STAT3. Microinjection of FAK inhibitor directly into the brain or spinal cord in adult mice rapidly induced CNTF mRNA and protein expression. Importantly, systemic treatment with FAK inhibitors over 3 days induced CNTF in the subventricular zone and increased neurogenesis. CONCLUSIONS: Neuron-astroglia contact mediated by integrins serves as a sensor to enable rapid neurotrophic responses and provides a new pharmacological avenue to exploit the neuroprotective properties of endogenous CNTF.


Subject(s)
Ciliary Neurotrophic Factor/metabolism , Neuroglia/metabolism , Receptors, Vitronectin/metabolism , STAT3 Transcription Factor/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line, Tumor , Ciliary Neurotrophic Factor/genetics , Coculture Techniques , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice, Inbred C57BL , Neurogenesis , Neuroglia/drug effects , Neurons/drug effects , Neurons/metabolism , Phosphorylation , Quinolones/pharmacology , Rats , Serine/metabolism , Signal Transduction , Sulfones/pharmacology , Thy-1 Antigens/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...