Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(8): 3283-3288, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35413201

ABSTRACT

Second-harmonic generation has been applied to study lattice, electronic, and magnetic proprieties in atomically thin materials. However, inversion symmetry breaking is usually required for the materials to generate a large signal. In this work, we report a giant second-harmonic generation that arises below the Néel temperature in few-layer centrosymmetric FePS3. A layer-dependent study indicates the detected signal is from the second-order nonlinearity of the surface. The magnetism-induced surface second-harmonic response is 2 orders of magnitude larger than those reported in other magnetic systems, with the surface nonlinear susceptibility reaching 0.08-0.13 nm2/V in 2-5 L samples. By combing linear dichroism and second-harmonic generation experiments, we further confirm the giant second-harmonic generation is coupled to nematic orders formed by the three possible Zigzag antiferromagnetic domains. Our study shows that the surface second-harmonic generation is also a sensitive tool to study antiferromagnetic states in centrosymmetric atomically thin materials.

2.
Phys Rev Lett ; 127(18): 187201, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767420

ABSTRACT

We have developed a sensitive cryogenic second-harmonic generation microscopy to study a van der Waals antiferromagnet MnPS_{3}. We find that long-range Néel antiferromagnetic order develops from the bulk crystal down to the bilayer, while it is absent in the monolayer. Before entering the long-range antiferromagnetic ordered phase in all samples, an upturn of the second harmonic generation below 200 K indicates the formation of the short-range order and magnetoelastic coupling. We also directly image the two antiphase (180°) antiferromagnetic domains and thermally induced domain switching down to bilayer. An anomalous mirror symmetry breaking shows up in samples thinner than ten layers for the temperature both above and below the Néel temperature, which indicates a structural change in few-layer samples. Minimal change of the second harmonic generation polar patterns in strain tuning experiments indicate that the symmetry crossover at ten layers is most likely an intrinsic property of MnPS_{3} instead of an extrinsic origin of substrate-induced strain. Our results show that second harmonic generation microscopy is a direct tool for studying antiferromagnetic domains in atomically thin materials, and opens a new way to study two-dimensional antiferromagnets.

3.
J Am Chem Soc ; 141(22): 8928-8936, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31090414

ABSTRACT

The failure to achieve stable Ohmic contacts in two-dimensional material devices currently limits their promised performance and integration. Here we demonstrate that a phase transformation in a region of a layered semiconductor, PdSe2, can form a contiguous metallic Pd17Se15 phase, leading to the formation of seamless Ohmic contacts for field-effect transistors. This phase transition is driven by defects created by exposure to an argon plasma. Cross-sectional scanning transmission electron microscopy is combined with theoretical calculations to elucidate how plasma-induced Se vacancies mediate the phase transformation. The resulting Pd17Se15 phase is stable and shares the same native chemical bonds with the original PdSe2 phase, thereby forming an atomically sharp Pd17Se15/PdSe2 interface. These Pd17Se15 contacts exhibit a low contact resistance of ∼0.75 kΩ µm and Schottky barrier height of ∼3.3 meV, enabling nearly a 20-fold increase of carrier mobility in PdSe2 transistors compared to that of traditional Ti/Au contacts. This finding opens new possibilities in the development of better electrical contacts for practical applications of 2D materials.

4.
ACS Appl Mater Interfaces ; 10(26): 22623-22631, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29888909

ABSTRACT

The formation of an electric double layer in ionic liquid (IL) can electrostatically induce charge carriers and/or intercalate ions in and out of the lattice which can trigger a large change of the electronic, optical, and magnetic properties of materials and even modify the crystal structure. We present a systematic study of ionic liquid gating of exfoliated 2D molybdenum trioxide (MoO3) devices and correlate the resultant electrical properties to the electrochemical doping via ion migration during the IL biasing process. A nearly 9 orders of magnitude modulation of the MoO3 conductivity is obtained for the two types of ionic liquids that are investigated. In addition, notably rapid on/off switching was realized through a lithium-containing ionic liquid whereas much slower modulation was induced via oxygen extraction/intercalation. Time of flight-secondary ion mass spectrometry confirms the Li intercalation. Density functional theory (DFT) calculations have been carried out to examine the underlying metallization mechanism. Results of short-pulse tests show the potential of these MoO3 devices as neuromorphic computing elements due to their synaptic plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...