Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Clin Oral Investig ; 28(7): 388, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898305

ABSTRACT

OBJECTIVES: To evaluate the potential of laser-microtextured abutments (LMAs) compared to machined abutments (MAs) in peri-implant clinical and radiographic outcomes. MATERIALS AND METHODS: Eligible studies consisted of randomized clinical trials (RCTs) retrieved from MEDLINE, Web of Science, Scopus, and Embase databases. The study adhered to the PRISMA statement, and the protocol was registered at the PROSPERO (registration number CRD42023443112). The risk of bias was evaluated according to version 2 of the Cochrane risk of bias tool (RoB 2). Meta-analyses were performed using random effect models. Afterward, the GRADE approach was used to determine the certainty of evidence. RESULTS: Four RCTs were included from a total of 2,876 studies. LMAs had lower peri-implant sulcus depth at 6-8 weeks (WMD: -0.69 mm; 95% CI: -0.97, -0.40; p = 0.15, I2 = 53%) and at one year (WMD: -0.75 mm; 95% CI: -1.41, -0.09; p = 0.09, I2 = 65%), but the certainty of evidence was low. In addition, the marginal bone loss favored the LMAs group (WMD: -0.29 mm; 95% CI: -0.36, -0.21; p = 0.69, I2 = 0%) with moderate evidence. There were fewer sites with bleeding on probing in the LMAs group (WMD: -1.10; 95% CI: -1.43, -0.77; p = 0.88, i2 = 0%). There was no statistical difference between groups for the modified gingival index and modified plaque index. Furthermore, all studies were classified as having some concerns risk of bias. CONCLUSIONS: There was low to moderate certainty evidence that LMAs can favor peri-implant clinical and radiographic parameters compared to MAs. CLINICAL RELEVANCE: Laser-microtextured abutments may benefit peri-implant clinical and radiographic outcomes.


Subject(s)
Dental Abutments , Lasers , Humans , Dental Implant-Abutment Design , Randomized Controlled Trials as Topic
2.
Braz Oral Res ; 37: e002, 2023.
Article in English | MEDLINE | ID: mdl-36629588

ABSTRACT

Protease-activated receptor-2 (PAR2) is associated with the pathogenesis of many chronic diseases with inflammatory characteristics, including periodontitis. This study aimed to evaluate how the activation of PAR2 can affect the osteogenic activity of human periodontal ligament stem cells (PDLSCs) in vitro. PDLSCs collected from three subjects were treated in osteogenic medium for 2, 7, 14, and 21 days with trypsin (0.1 U/mL), PAR2 specific agonist peptide (SLIGRL-NH2) (100 nM), and PAR2 antagonist peptide (FSLLRY-NH2) (100 nM). Gene (RT-qPCR) expression and protein expression (ELISA) of osteogenic factors, bone metabolism, and inflammatory cytokines, cell proliferation, alkaline phosphatase (ALP) activity, alizarin red S staining, and supernatant concentration were assessed. Statistical analysis of the results with a significance level of 5% was performed. Activation of PAR2 led to decreases in cell proliferation and calcium deposition (p < 0.05), calcium concentration (p < 0.05), and ALP activity (p < 0.05). Additionally, PAR2 activation increased gene and protein expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) (p < 0.05) and significantly decreased the gene and protein expression of osteoprotegerin (p <0. 05). Considering the findings, the present study demonstrated PAR2 activation was able to decrease cell proliferation, decreased osteogenic activity of PDLSCs, and upregulated conditions for bone resorption. PAR2 may be considered a promising target in periodontal regenerative procedures.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , Cell Differentiation , Receptor, PAR-2/metabolism , Calcium , Stem Cells , Cell Proliferation , Cells, Cultured
3.
Braz. oral res. (Online) ; 37: e002, 2023. graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1420947

ABSTRACT

Abstract Protease-activated receptor-2 (PAR2) is associated with the pathogenesis of many chronic diseases with inflammatory characteristics, including periodontitis. This study aimed to evaluate how the activation of PAR2 can affect the osteogenic activity of human periodontal ligament stem cells (PDLSCs) in vitro. PDLSCs collected from three subjects were treated in osteogenic medium for 2, 7, 14, and 21 days with trypsin (0.1 U/mL), PAR2 specific agonist peptide (SLIGRL-NH2) (100 nM), and PAR2 antagonist peptide (FSLLRY-NH2) (100 nM). Gene (RT-qPCR) expression and protein expression (ELISA) of osteogenic factors, bone metabolism, and inflammatory cytokines, cell proliferation, alkaline phosphatase (ALP) activity, alizarin red S staining, and supernatant concentration were assessed. Statistical analysis of the results with a significance level of 5% was performed. Activation of PAR2 led to decreases in cell proliferation and calcium deposition (p < 0.05), calcium concentration (p < 0.05), and ALP activity (p < 0.05). Additionally, PAR2 activation increased gene and protein expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) (p < 0.05) and significantly decreased the gene and protein expression of osteoprotegerin (p <0. 05). Considering the findings, the present study demonstrated PAR2 activation was able to decrease cell proliferation, decreased osteogenic activity of PDLSCs, and upregulated conditions for bone resorption. PAR2 may be considered a promising target in periodontal regenerative procedures.

SELECTION OF CITATIONS
SEARCH DETAIL