Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5614, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556672

ABSTRACT

Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3's transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Phytochrome B/genetics , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Gene Expression Regulation, Plant/radiation effects , Models, Genetic , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/metabolism , Plants, Genetically Modified , Protein Binding/radiation effects , Sequence Homology, Amino Acid , Transcriptional Activation/radiation effects , Tumor Suppressor Protein p53/metabolism
2.
Nat Commun ; 11(1): 1966, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312985

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 1660, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245953

ABSTRACT

Warm temperature is postulated to induce plant thermomorphogenesis through a signaling mechanism similar to shade, as both destabilize the active form of the photoreceptor and thermosensor phytochrome B (phyB). At the cellular level, shade antagonizes phyB signaling by triggering phyB disassembly from photobodies. Here we report temperature-dependent photobody localization of fluorescent protein-tagged phyB (phyB-FP) in the epidermal cells of Arabidopsis hypocotyl and cotyledon. Our results demonstrate that warm temperature elicits different photobody dynamics than those by shade. Increases in temperature from 12 °C to 27 °C incrementally reduce photobody number by stimulating phyB-FP disassembly from selective thermo-unstable photobodies. The thermostability of photobodies relies on phyB's photosensory module. Surprisingly, elevated temperatures inflict opposite effects on phyB's functions in the hypocotyl and cotyledon despite inducing similar photobody dynamics, indicative of tissue/organ-specific temperature signaling circuitry either downstream of photobody dynamics or independent of phyB. Our results thus provide direct cell biology evidence supporting an early temperature signaling mechanism via dynamic assembly/disassembly of individual photobodies possessing distinct thermostabilities.


Subject(s)
Arabidopsis Proteins/metabolism , Cell Nucleus Structures/metabolism , Photoreceptor Cells/metabolism , Phytochrome B/metabolism , Temperature , Arabidopsis/metabolism , Cotyledon/cytology , Cotyledon/metabolism , Gene Expression Regulation, Plant , Hypocotyl/cytology , Hypocotyl/metabolism , Light , Plant Cells/metabolism , Plant Epidermis/metabolism , Signal Transduction , Transcription Factors/metabolism
4.
Nucleic Acids Res ; 45(19): 11043-11055, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28977553

ABSTRACT

In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Protein Biosynthesis , Ribosome Subunits/metabolism , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Kinetics , Models, Molecular , Protein Binding , Protein Domains , Ribosome Subunits/chemistry , Ribosome Subunits/genetics
5.
J Biol Chem ; 290(34): 20856-20864, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26163516

ABSTRACT

The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.


Subject(s)
Apoproteins/chemistry , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , GTP Phosphohydrolases/chemistry , Guanosine Diphosphate/chemistry , Phosphoproteins/chemistry , Pyrophosphatases/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Crystallography, X-Ray , Enteropathogenic Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression , Guanosine Diphosphate/metabolism , Kinetics , Models, Molecular , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrophosphatases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosome Subunits, Small/genetics , Ribosome Subunits, Small/metabolism , Signal Transduction , Stress, Physiological , Thermodynamics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...