Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12772, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728172

ABSTRACT

Folate receptor (FR)-targeted small molecule drug conjugates (SMDCs) have shown promising results in early stage clinical trials with microtubule destabilizing agents, such as vintafolide and EC1456. In our effort to develop FR-targeted SMDCs with varying mechanisms of action, we synthesized EC2629, a folate conjugate of a DNA crosslinking agent based on a novel DNA-alkylating moiety. This agent was found to be extremely potent with an in vitro IC50 ~ 100× lower than folate SMDCs constructed with various microtubule inhibitors. EC2629 treatment of nude mice bearing FR-positive KB human xenografts led to cures in 100% of the test animals with very low dose levels (300 nmol/kg) following a convenient once a week schedule. The observed activity was not accompanied by any noticeable weight loss (up to 20 weeks post end of dosing). Complete responses were also observed against FR-positive paclitaxel (KB-PR) and cisplatin (KB-CR) resistant models. When evaluated against FR-positive patient derived xenograft (PDX) models of ovarian (ST070), endometrial (ST040) and triple negative breast cancers (ST502, ST738), EC2629 showed significantly greater anti-tumor activity compared to their corresponding standard of care treatments. Taken together, these studies thus demonstrated that EC2629, with its distinct DNA reacting mechanism, may be useful in treating FR-positive tumors, including those that are classified as drug resistant.


Subject(s)
Antineoplastic Agents/pharmacology , Cross-Linking Reagents/pharmacology , DNA/chemistry , Endometrial Neoplasms/drug therapy , Folate Receptors, GPI-Anchored/chemistry , Ovarian Neoplasms/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Alkylating Agents/chemistry , Animals , Cattle , Cisplatin/administration & dosage , Dogs , Drug Delivery Systems , Drug Design , Drug Evaluation, Preclinical , Female , Folic Acid/analogs & derivatives , Folic Acid/pharmacology , Humans , Inhibitory Concentration 50 , KB Cells , Ligands , Mice , Mice, Inbred C57BL , Mice, Nude , Paclitaxel/administration & dosage , Rats , Vinca Alkaloids/pharmacology , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem Lett ; 30(7): 126987, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32029324

ABSTRACT

Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed and synthesized a diazepine-ring-opened bis-PBD prodrug (pro-PBD-PBD) folate conjugate lacking the one of the two imine moieties found in the corresponding free bis-PBD. Upon entering a targeted cell, cleavage of the linker system, including the hydrolysis of an oxazolidine moiety, results in the formation of a reactive intermediate which possesses a newly formed aldehyde as well as an aromatic amine. A fast and spontaneous intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine, and as a result, the diazepine ring, thereby delivering the bis-PBD to the targeted cell. The in vitro and in vivo activity of this conjugate has been evaluated on folate receptor positive KB cells. Sub-nanomolar activity with good specificity and high cure rates with minimal toxicity have been observed.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Benzodiazepines/therapeutic use , Folate Receptors, GPI-Anchored/metabolism , Neoplasms/drug therapy , Prodrugs/therapeutic use , Pyrroles/therapeutic use , Animals , Antibiotics, Antineoplastic/chemical synthesis , Antibiotics, Antineoplastic/pharmacology , Benzodiazepines/chemical synthesis , Benzodiazepines/pharmacology , Drug Design , Female , HeLa Cells , Humans , Mice, Nude , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Xenograft Model Antitumor Assays
3.
Bioconjug Chem ; 30(6): 1805-1813, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31075200

ABSTRACT

Prostate-specific membrane antigen (PSMA) is a biomarker that is overexpressed on prostate cancer, and it is also present on the neovasculature within many non-prostate solid tumors. Herein, we report on the construction and biological testing of novel tubulysin B-containing therapeutic agents for the treatment of PSMA-expressing cancer. One of these compounds, EC1169, emerged as a lead candidate for preclinical development and phase 1 clinical testing. This water-soluble conjugate was shown to have high affinity for PSMA-positive cells. When tested in vitro, EC1169 was found to inhibit the growth of PSMA-positive cells, but it displayed no activity against PSMA-negative cells. Brief treatment of nude mice bearing PSMA-positive LNCaP human xenografts with EC1169 led to complete remissions and cures. Furthermore, this activity occurred in the absence of weight loss. In contrast, the nontargeted tubulysin B drug proved to be inactive against the LNCaP tumor model when administered at doses near to or greater than the maximum tolerated level. PSMA-negative KB tumors did not appreciably respond to EC1169 therapy, thereby confirming this compound's targeted specificity for PSMA-positive cells. Finally, treatment of LNCaP-bearing mice with docetaxel (the most active chemotherapeutic agent approved for late stage prostate cancer therapy) was found to produce only modest anti-tumor activity, and this outcome was also associated with severe weight loss. Taken together, these results strongly indicate that PSMA-positive tumors may be effectively treated using highly potent, PSMA-targeted small-molecule drug conjugates using regimens that do not cause undesirable side effects.


Subject(s)
Antigens, Surface/analysis , Antineoplastic Agents/therapeutic use , Glutamate Carboxypeptidase II/analysis , Oligopeptides/therapeutic use , Pipecolic Acids/therapeutic use , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Male , Mice, Nude , Oligopeptides/chemistry , Pipecolic Acids/chemistry , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
Bioconjug Chem ; 28(12): 2921-2931, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29211454

ABSTRACT

Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds, and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed diazepine-ring-opened conjugated prodrugs lacking the imine moiety. Once the prodrug (pro-PBD) conjugate enters a targeted cell, cleavage of the linker system triggers the generation of a reactive intermediate possessing an aldehyde and aromatic amine. An intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine and, as a result, the diazepine ring. In our pro-PBDs, we mask the aldehyde as a hydrolytically sensitive oxazolidine moiety which in turn is a part of a reductively labile self-immolative linker system. To prove the range of applications for this new class of latent DNA-alkylators, we designed and synthesized several novel latent warheads: pro-PBD dimers and hybrids of pro-PBD with other sequence-selective DNA minor groove binders. Preliminary preclinical pharmacology studies showed excellent biological activity and specificity.


Subject(s)
Benzodiazepines/chemistry , Benzodiazepines/metabolism , Drug Design , Molecular Targeted Therapy , Neoplasms/drug therapy , Prodrugs/chemical synthesis , Prodrugs/metabolism , Pyrroles/chemistry , Pyrroles/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Chemistry Techniques, Synthetic , Humans , KB Cells , Neoplasms/pathology , Prodrugs/chemistry , Pyrroles/pharmacology , Pyrroles/therapeutic use
5.
Mol Med ; 21: 584-96, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26181632

ABSTRACT

Folate receptor (FR)-ß has been identified as a promising target for antimacrophage and antiinflammatory therapies. In the present study, we investigated EC0565, a folic acid-derivative of everolimus, as a FR-specific inhibitor of the mammalian target of rapamycin (mTOR). Because of its amphiphilic nature, EC0565 was first evaluated for water solubility, critical micelle formation, stability in culture and FR-binding specificity. Using FR-expressing macrophages, the effect of EC0565 on mTOR signaling and cellular proliferation was studied. The pharmacokinetics, metabolism and bioavailability of EC0565 were studied in normal rats. The in vivo activity of EC0565 was assessed in rats with adjuvant arthritis, a "macrophage-rich" model with close resemblance to rheumatoid arthritis. EC0565 forms micellar aggregates in physiological buffers and demonstrates good water solubility as well as strong multivalent FR-binding capacity. EC0565 inhibited mTOR signaling in rat macrophages at nanomolar concentrations and induced G0/G1 cell cycle arrest in serum-starved RAW264.7 cells. Subcutaneously administered EC0565 in rats displayed good bioavailability and a relatively long half-life (~12 h). When given at 250 nmol/kg, EC0565 selectively inhibited proliferating cell nuclear antigen expression in thioglycollate-stimulated rat peritoneal cells. With limited dosing regimens, the antiarthritic activity of EC0565 was found superior to that of etanercept, everolimus and a nontargeted everolimus analog. The in vivo activity of EC0565 was also comparable to that of a folate-targeted aminopterin. Folate-targeted mTOR inhibition may be an effective way of suppressing activated macrophages in sites of inflammation, especially in nutrient-deprived conditions, such as in the arthritic joints. Further investigation and improvement upon the physical and biochemical properties of EC0565 are warranted.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Everolimus/analogs & derivatives , Everolimus/administration & dosage , Folic Acid/analogs & derivatives , Folic Acid/administration & dosage , Inflammation/drug therapy , TOR Serine-Threonine Kinases/genetics , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cell Proliferation/drug effects , Everolimus/chemistry , Folate Receptor 2/genetics , Folate Receptor 2/metabolism , Folic Acid/chemistry , Humans , Inflammation/genetics , Inflammation/pathology , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors
6.
Clin Immunol ; 150(1): 64-77, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24333534

ABSTRACT

EC0746 is a rationally designed anti-inflammatory drug conjugate consisting of a modified folic acid-based ligand linked to a γ-hydrazide analog of aminopterin. In this report, EC0746's effectiveness was evaluated against experimental retinal S-antigen (PDSAg) induced autoimmune uveitis (EAU) and myelin-basic-protein induced autoimmune encephalomyelitis (EAE). In both models, functional FR-ß was detected on activated macrophages in local (retinal or central-nervous-system, respectively) and systemic (peritoneal cavity) sites of inflammation. In myelin-rich regions of EAE rats, an increased uptake of (99m)Tc-EC20 (etarfolatide; a FR-specific radioimaging agent) was also observed. EC0746 treatment at disease onset suppressed the clinical severity of both EAU and EAE, and it strongly attenuated progressive histopathological changes in the affected organs. In all parameters assessed, EC0746 activity was completely blocked by a benign folate competitor, suggesting that these therapeutic outcomes were specifically FR-ß mediated. EC0746 may emerge as a useful macrophage-modulating agent for treating inflammatory episodes of organ-specific autoimmunity.


Subject(s)
Aminopterin/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Folic Acid Antagonists/therapeutic use , Uveitis/drug therapy , Aminopterin/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Folate Receptor 2/immunology , Folic Acid Antagonists/pharmacology , Macrophages/drug effects , Macrophages/immunology , Rats , Rats, Inbred Lew , Spinal Cord/drug effects , Spinal Cord/immunology , Uveitis/immunology , Uveitis/pathology
7.
Bioorg Med Chem Lett ; 21(22): 6778-81, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974954

ABSTRACT

Tubuylsins are extremely potent cytotoxic agents which inhibit tubulin polymerization and lead to cell cycle arrest and apoptosis. Tubulysins have been isolated from fermentation mixtures and have been chemically synthesized; however, these efforts have been hampered by poor yields and arduous purifications. In contrast, treatment of a mixture of natural tubulysins A, B, C, G, and I, obtained from a fermentation batch with trifluoroacetic acid results in the formation of a single N-acyliminium ion. Subsequent addition of butyric, isopentyl, or acetic acid results in the formation of tubulysin B, A, or I, respectively, as a single species. New tubulysin analogs can be formed upon treatment of the acyliminium ion with other nucleophiles such as alcohols, thiols, and nitriles, resulting in corresponding N-acyl-N,O-acetals, N-acyl-N,S-thioacetals, and N,N'-diacyl-aminals. Carbon-carbon bond formation is also possible with a modification of this protocol. The cytotoxicies of the natural tubulysins and tubulysin analogs synthesized by this method were evaluated on KB cells.


Subject(s)
Biological Products/chemical synthesis , Chemistry Techniques, Synthetic/methods , Myxococcales/chemistry , Oligopeptides/chemical synthesis , Pipecolic Acids/chemical synthesis , Tubulin Modulators/chemical synthesis , Acetic Acid/chemistry , Biological Products/chemistry , Chemistry Techniques, Synthetic/economics , Imines/chemistry , Ions/chemistry , Oligopeptides/chemistry , Pipecolic Acids/chemistry , Tubulin Modulators/chemistry
8.
Bioorg Med Chem Lett ; 21(4): 1202-5, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21236665

ABSTRACT

Efficient syntheses of folate receptor (FR) targeting conjugates of the anti-inflammatory, aminopterin hydrazide, are described. 2-{4-Benzoylamino}-5-oxo-5-{N'-[2-(pyridin-2-yldisulfanyl)-ethoxycarbonyl]-hydrazino}-pentanoic acid is synthesized from commercially available 4-[(2-amino-4-imino-3,4-dihydro-pteridin-6-yl-methyl)-amino]-benzoic acid. Conjugation of this novel, activated aminopterin hydrazide to folic acid through cysteine-terminating (C-terminus), peptide/carbohydrate spacers results in highly water soluble conjugates which allow for the release of free aminopterin hydrazide within the endosomes of targeted cells.


Subject(s)
Aminopterin/chemistry , Anti-Inflammatory Agents/chemistry , Folic Acid/analogs & derivatives , Aminopterin/chemical synthesis , Aminopterin/therapeutic use , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Drug Design , Folic Acid/chemical synthesis , Folic Acid/chemistry , Folic Acid/therapeutic use , Humans , Inflammation/drug therapy , Stereoisomerism
9.
J Org Chem ; 75(11): 3685-91, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20423159

ABSTRACT

To better regulate the biodistribution of the vinblastine-folate conjugate, EC145, a new folate-spacer that incorporates 1-amino-1-deoxy-D-glucitol-gamma-glutamate subunits into a peptidic backbone, was synthesized. Synthesis of Fmoc-3,4;5,6-di-O-isopropylidene-1-amino-1-deoxy-D-glucitol-gamma-glutamate 20, suitable for Fmoc-strategy solid-phase peptide synthesis (SPPS), was achieved in four steps from delta-gluconolactone. Addition of alternating glutamic acid and 20 moieties onto a cysteine-loaded resin, followed by the addition of folate, deprotection, and cleavage, resulted in the isolation of the new folate-spacer: Pte-gammaGlu-(Glu(1-amino-1-deoxy-D-glucitol)-Glu)(2)-Glu(1-amino-1-deoxy-D-glucitol)-Cys-OH (21). The addition of 21 to an appropriately modified desacetylvinblastine hydrazide (DAVLBH) resulted in a conjugate (25) with an improved therapeutic index. Treatment of 25 with DTT in neutral buffer at room temperature demonstrated that free DAVLBH would be released under the reductive environment of the internalized endosome.


Subject(s)
Carbohydrates/chemistry , Folic Acid/analogs & derivatives , Vinca Alkaloids/chemical synthesis , Vinca Alkaloids/toxicity , Animals , Antineoplastic Agents , Drug Design , Endosomes/metabolism , Folic Acid/chemical synthesis , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Folic Acid/therapeutic use , Folic Acid/toxicity , Humans , Tissue Distribution , Vinblastine/chemistry , Vinblastine/therapeutic use , Vinca Alkaloids/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...