Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(25): e2208179, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36935369

ABSTRACT

The realization of solar-light-driven CO2  reduction reactions (CO2 RR) is essential for the commercial development of renewable energy modules and the reduction of global CO2 emissions. Combining experimental measurements and theoretical calculations, to introduce boron dopants and nitrogen defects in graphitic carbon nitride (g-C3 N4 ), sodium borohydride is simply calcined with the mixture of g-C3 N4 (CN), followed by the introduction of ultrathin Co phthalocyanine through phosphate groups. By strengthening H-bonding interactions, the resultant CoPc/P-BNDCN nanocomposite showed excellent photocatalytic CO2 reduction activity, releasing 197.76 and 130.32 µmol h-1  g-1 CO and CH4 , respectively, and conveying an unprecedented 10-26-time improvement under visible-light irradiation. The substantial tuning is performed towards the conduction and valance band locations by B-dopants and N-defects to modulate the band structure for significantly accelerated CO2 RR. Through the use of ultrathin metal phthalocyanine assemblies that have a lot of single-atom sites, this work demonstrates a sustainable approach for achieving effective photocatalytic CO2 activation. More importantly, the excellent photoactivity is attributed to the fast charge separation via Z-scheme transfer mechanism formed by the universally facile strategy of dimension-matched ultrathin (≈4 nm) metal phthalocyanine-assisted nanocomposites.

2.
Trials ; 23(1): 932, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348476

ABSTRACT

BACKGROUND: COVID-19 poses a global health challenge with more than 325 million cumulative cases and above 5 million cumulative deaths reported till January 17, 2022, by the World Health Organization. Several potential treatments to treat COVID-19 are under clinical trials including antivirals, steroids, immunomodulators, non-specific IVIG, monoclonal antibodies, and passive immunization through convalescent plasma. The need to produce anti-COVID-19 IVIG therapy must be continued, alongside the current treatment modalities, considering the virus is still mutating into variants of concern. In this context, as the present study will exploit pooled diversified convalescent plasma collected from recovered COVID-19 patients, the proposed hyperimmune Anti-COVID-19 intravenous immunoglobulin (C-IVIG) therapy would be able to counter new infectious COVID-19 variants by neutralizing the virus particles. After the successful outcome of the phase I/II clinical trial of C-IVIG, the current study aims to further evaluate the safety and efficacy of single low dose C-IVIG in severe COVID-19 patients for its phase II/III clinical trial. METHODS: This is a phase II/III, adaptive, multi-center, single-blinded, randomized controlled superiority trial of SARS-CoV-2 specific polyclonal IVIG (C-IVIG). Patients fulfilling the eligibility criteria will be block-randomized using a sealed envelope system to receive either 0.15 g/Kg C-IVIG with standard of care (SOC) or standard of care alone in 2:1 ratio. The patients will be followed-up for 28 days to assess the primary and secondary outcomes. DISCUSSION: This is a phase II/III clinical trial evaluating safety and efficacy of hyperimmune anti-COVID-19 intravenous immunoglobulin (C-IVIG) in severe COVID-19 patients. This study will provide clinical evidence to use C-IVIG as one of the first-line therapeutic options for severe COVID-19 patients. TRIAL REGISTRATION: Registered at clinicaltrial.gov with NCT number NCT04891172 on May 18, 2021.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Pneumonia, Viral , Humans , SARS-CoV-2 , Betacoronavirus , Pneumonia, Viral/drug therapy , Immunoglobulins, Intravenous/adverse effects , Coronavirus Infections/drug therapy , Pandemics , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , COVID-19 Serotherapy
3.
Chem Commun (Camb) ; 56(1): 129-132, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31799551

ABSTRACT

Reconstructed transparent conductive films of fluorine doped tin oxide on glass substrates synthesized by electrochemical reduction followed by thermal oxidation were demonstrated to be effective in collecting photogenerated electrons in planar perovskite solar cells. Compared to the cells fabricated with the pristine film, the cell based on the reconstructed film shows an improved power conversion efficiency under forward scan from 9% to 15.1% and greatly weakened hysteresis behavior.

4.
Chem Commun (Camb) ; 55(37): 5343-5346, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30994129

ABSTRACT

Pristine nickel phthalocyanine (NiPc) was introduced as a hole transporting material (HTM) in inverted planar perovskite solar cells (PSCs) for the first time. A power conversion efficiency of 14.3% was achieved, outperforming the values obtained in the solar cells based on the CuPc HTM, which is a typical representative of metal phthalocyanine based HTMs. Moreover, inverted planar PSCs based on NiPc HTMs show a very weak hysteresis behavior.

5.
Sci Bull (Beijing) ; 64(8): 547-552, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-36659745

ABSTRACT

SnO2 quantum dots (QDs) ended with chlorine ions are introduced at the interface of spin-coated TiO2 electron selective layer (ESL)/perovskite to fill the pinholes in the layer and passivate the trapping defects. As a result of the increased interface electron collection and reduced bulk recombination, the planar perovskite solar cell with the QDs modified ESL gives the large power conversion efficiency enhancement from 14.9% to 17.3% and greatly improved stability under the continuous light irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...